/

Player controls

3D Viewer

- scenery, track, terrain appearance
- sky, water, sun, moon

- time of day effects

- weather , season effects

- shadows, lights

- forest regions

- appearance of interactive objects
- behaviour and appearance of
animated objects, hazards etc

- appearance of signals

- behaviour and appearance of smoke

Camera
Controls
. Loco
Simulator Appearance
Con‘trols Cab View
N 1

OVERVIEW

Important Point:
Communication is one way, with

viewers calling methods and
examining properties in the
Simulator. The simulator does
not call the viewers except

Dispatch Board
Viewer

Simulator

X Loco
Ie, pause Physics Train
,|uncouple Physics
dtc
[SetAccelleration()
Al //‘

Signals

Other Trains

T o through the event notification
ower perator mechanism.
Viewer
2D Track
Schematic
Multiple possible viewers. Viewer
Simulator
State
Network

Interface

>| Switch Aliament |

Simulator State contains:

yISiqnaI Indications |

- currently running activity

|~

A

- date, time, season, weather
- tdb
- position and speed of all trains

The modules for Al and
Signals can be replaced on a
‘per route’ basis with a

custom .dll

Loco Appearance and/or

v

Save and restore games
by saving and restoring

Loco Physics modules can

be replaced on a “per wagon

basis.

bl

simulator game state.

- alignment of switch tracks

- indication of all signals

- some critical animation states ie
loco lights on or off, bell is ringing,
pan is up or down

Network interface keeps
simulator state in sync
among multiple players

Remote computer does
not run Al or Signals

Since simulator state is kept in sync across modules.

the network, it should exclude info that can
be regenerated locally — ie wheel rotation
angle, smoke particles, scenery animation
position, etc. These things will be
maintained inside the 3D Viewer

3D Viewer

One player driven locomotive in
the train. Second locomotive
‘MU’d’. Note, even for steam loco

Pl . Loco powered trains we will implement
ayer input - ————— Appearance concept of an undriven loco,
Controls controlled by signals from the
driven loco.
Controls
Brake Line Train
Fogces
Propagation Loco - > Physics
Physics 96Power Computes
Sl — Car
F .
Loco e Locations
Physics | Car
—— ”| Locations
Car FQ,LCGS
Physics
Car Fogees
Physics

A Loco Physics module must be able to
respond to control commands from its
matching 3D viewer module., OR,
%power commands. The %power
commands is the mechanism used to
control undriven loco’s in a multiple
unit train, to control a loco on an Al
driven train, and to control a loco that is
driven remotely on another PC. Note
that in the latter two cases, since the
force calculations are ignored, the
purpose of notifying the loco physics
module of the loco’s power setting is
only to ensure its sounds, smoke
generation etc are appropriate for the
power levels it is running at.

PLAYER CONTROLLED TRAIN

Al CONTROLLED TRAIN

Al Controlled Train. The train
physics module sends %power
signals to physics module to
control animation etc of the loco
under power. However, forces are
ignored. To ensure deterministic
behaviour, train motion follows
acceleration commands fromAl

Brake Line
Propagation Loco
Physics %Power Forces
PSI Ignored
Since loco pnd car Loco
forces are ignored on Physics
an Al train| brake line
propagation module is Car
unused, angl could be Physics Forces
disconnected to save lgnored
computing resources. Car
Physics
y
A.I Waypoints AI.
Dispatcher “Tocation "1 Driver
- time

Train
Physics
Computes
Car
Locations

Car

- speed

A 4

Locations

SetAccelleration()

Commands

REMOTE CONTROLLED TRAIN

Brake Line Train
Propagation Loco Physics
Physics %Power Forces Computes
) PSI Ignored Car
Since loco pnd car Loco Locations
forces are ignored on Physics Car
an Al train| brake line » Locations
propagation module is Car
unused, angl could be Physics Forces
disconnectgd to save Ignored
computing resources. Car
Physics
A
Timestamped SetAccelleration
Network Network Position > Remote Commands 0
Updates Driver

In a multiple player environment, each
train is controlled by only one
controlling computer. All other
computers update the position of the
train via the remote driver. The remote
driver receives broadcasted
timestamped position updates from the
controlling computer. It compares these
with where the train actually is on his
computer, and issues setAccelleration
commands as need .

Main(Act.)

Construct Simulator(for Act.)

Construct Viewer3D(for Sim.)

Construct RenderProcess()
Viewer3D.Configure()
Construct LoaderProcess()

Construct UpdaterProcess()

Viewer3D.Run()

RenderProcess.Run()

RenderProcess
(XNA Game Class)

STARTING
PROGRAM

RenderProcess.Initialize()

Materials. Initialize()

Viewer3D.Initialize()

Viewer3D.LoadPren()

Viewer3D.Load() /

TerrainDrawer.Load()
SceneryDrawerLoad()
TrainDrawerLoad()

LoaderProcess.Run()
UpdaterProcess.Run()

Improving Load Time

TerrainDrawer.Load() could benefit from
additional multiprocessing. It is CPU limited
(vs Disk limited) and it shouldn’t be too hard to
split the loading task off into multiple processor
threads, one for each tile.

RenderProcess.Draw()

UserInput.Update()

UpdaterProcess.Update()

FRAME 1
Draws Nothing

RenderFrame

RenderProcess.Draw()

FRAME 2

Must wait for the
renderframe data before it
can begin to draw.

UpdaterProcess.Update()

Simulator.Update()
- physics

- ai

- signals

Viewer3D.Handle Userlnput()
- camera

- player loco

- game control

Viewer3D.PrepareFrame()
- camera

- Sky

- terrain

- scenery

- trains

- info

A

Viewer3D.LoaderPrep()
- terrain
- scenery

enderFrame - trains

STARTING
3D GRAPHICS
SYSTEM

LoaderProcess

HandleUser
Input runs
every 30 ms

RenderFrame.Draw()
For each Primitive ...

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

RenderProcess.Draw()

T —

UpdaterProcess.Update() ———_|

RenderFrame

Lis
pri

RenderFrame

Simulator.Update()
- physics

-ai

- signals

Viewer3D.PrepareFrame()
- camera

- Sky

- terrain

- scenery

- trains

- info

Deletions

Viewer3D.Load()

- TerrainDrawerLoad()

- SceneryDrawerLoad()

- TrainDrawerLoad()

100 mS

