3D Viewer

- scenery, track, terrain appearance
- sky, water, sun, moon

- time of day effects

- weather , season effects

- shadows, lights

- forest regions

- appearance of interactive objects
- behaviour and appearance of
animated objects, hazards etc

- appearance of signals

- behaviour and appearance of smoke

Camera
Controls
) Loco
Simulator
Controls
~—1

Viewer

OVERVIEW
Important Point:
Communication is one way, with
Dispatch Board viewers calling methods and

examining properties in the
Simulator. The simulator does

1

Player controls

I, pause Train
,jJuncouple Physics
gtc

[SetAccelleration()

Simulator

Simulator
State

. ‘ Signals \

- - - / -
Multiple possible viewers. Viewer

not call the viewers except

T o through the event notification
c_Jwer perator mechanism.
Viewer

2D Track

Schematic

/

Network

Other Trains

Switch Aligment |

Signal Indications |

A

Interface

Simulator State contains:

- currently running activity

- date, time, season, weather

- tdb

- position and speed of all trains

The modules for Al and
Signals can be replaced on a
‘per route’ basis with a

v

custom .dll Save and restore games
by saving and restoring

Loco Appearance and/or simulator game state.

Loco Physics modules can
be replaced on a ‘per wagon
basis.

b

Since simulator state is kept in sync across

- alignment of switch tracks)

- indication of all signals Network interface keeps
- some critical animation states ie simulator state in sync
loco lights on or off, bell is ringing, among multiple players

pan is up or down
Remote computer does

not run Al or Signals
modules.

the network, it should exclude info that can
be regenerated locally — ie wheel rotation
angle, smoke particles, scenery animation
position, etc. These things will be
maintained inside the 3D Viewer

3D Viewer One player driven locomotive in
the train. Second locomotive
‘MU’d’. Note, even for steam loco
. Loco powered trains we will implement
Player input — ADDearance concept of an undriven loco,
Controls PP i
controlled by signals from the
driven loco.
Brake Line Forces Train
Propagation | g Physics
Physics 96Power Computes
PSI Car
F .
Loco I gees Locations
1 Physics | Car
”| Locations
Car Fqices
3 Physics
Car Fqices
3 Physics

A Loco Physics module must be able to
respond to control commands from its
matching 3D viewer module., OR,
%power commands. The %power
commands is the mechanism used to
control undriven loco’s in a multiple
unit train, to control a loco on an Al
driven train, and to control a loco that is
driven remotely on another PC. Note
that in the latter two cases, since the
force calculations are ignored, the
purpose of notifying the loco physics
module of the loco’s power setting is
only to ensure its sounds, smoke
generation etc are appropriate for the
power levels it is running at.

PLAYER CONTROLLED TRAIN

Al CONTROLLED TRAIN

Al Controlled Train. The train
physics module sends %power
signals to physics module to
control animation etc of the loco
under power. However, forces are
ignored. To ensure deterministic
behaviour, train motion follows
acceleration commands fromAl

]
%Power

Forces
Ignored

Forces
Ignored

Train
Physics
Computes
Car
Locations
Car
> Locations

Brake Line
Propagation
1 Physics
PSI
Since loco pnd car Loco
forces are ignored on 1 Physics [«
an Al train| brake line
propagation module is Car
unused, angl could be 4 ‘Physics i
disconnectgd to save
computing resources. Car
1 Physics
A! Waypoints Al .
Dispatcher —Tocation » Driver
- time

- speed

SetAccelleration()

Commands

REMOTE CONTROLLED TRAIN

Brake Line Train
Propagation | Physics
Physics [%Power FOrces Computes
_ PSI Ignored Car
Since loco and car Loco Locations
forces are ignored on 1 Physics [Car
an Al train| brake line » Locations
propagation module is Car
unused, andl could be 4 ‘Physics i Forces
disconnected to save Ignored
computing resources. Car
1 ‘Physics i
A
N Timestamped Remote SetAccelleration()
etwork Network Position > Commands
Updates Driver

In a multiple player environment, each
train is controlled by only one
controlling computer. All other
computers update the position of the
train via the remote driver. The remote
driver receives broadcasted
timestamped position updates from the
controlling computer. It compares these
with where the train actually is on his
computer, and issues setAccelleration
commands as need .

Main(Act.)

Construct Simulator(for Act.)

Construct Viewer3D(for Sim.)

Construct RenderProcess()
Viewer3D.Configure()
Construct LoaderProcess()

Construct UpdaterProcess()

Viewer3D.Run()

RenderProcess.Run()

RenderProcess
(XNA Game Class)

STARTING
PROGRAM

RenderProcess. Initialize()

Materials. Initialize()

Viewer3D.lnitialize()

Viewer3D.LoadPren()

Viewer3D.Load() /

TerrainDrawer.Load()
SceneryDrawerLoad()
TrainDrawerLoad()

LoaderProcess.Run()
UpdaterProcess.Run()

Improving Load Time

TerrainDrawer.Load() could benefit from
additional multiprocessing. It is CPU limited
(vs Disk limited) and it shouldn’t be too hard to
split the loading task off into multiple processor
threads, one for each tile.

RenderProcess.Draw()

Userlnput.Update()

UpdaterProcess.Update()
FRAME 1

Draws Nothing

RenderProcess.Draw()

FRAME 2

Must wait for the
renderframe data before it
can begin to draw.

UpdaterProcess.Update()

RenderFrame
RenderFral
N
enderFrame

Simulator.Update()
- physics

-ai

- signals

Viewer3D.Handle UserInput()
- camera

- player loco

- game control

Viewer3D.PrepareFrame()
- camera

- sky

- terrain

- scenery
- trains
- info

Viewer3D.LoaderPrep()
- terrain

- scenery

- trains

STARTING
3D GRAPHICS
SYSTEM

LoaderProcess

HandleUser
Input runs
every 30 ms

RenderFrame.Draw()
For each Primitive ...

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

Material.Render()
RenderPrimitive.Draw()

RenderProcess.Draw()

NI

UpdaterProcess.Update() — —~—_]

RenderFrame

Lis
pri

RenderFrame

Simulator.Update()
- physics

-ai

- signals

Viewer3D.PrepareFrame()
- camera

- sky

- terrain

- scenery

- trains

- info

Deletions

Viewer3D.Load()

- TerrainDrawerLoad()

- SceneryDrawerLoad()

- TrainDrawerLoad()

100 mS

