How to Provide Track Profiles for Open Rails Dynamic Track

This “How to” guide describes track profiles for dynamic track implemented in Open Rails as of
VV716. Externally defined track profiles for dynamic track were supported in Open Rails beginning with
V402. The purpose of this document is to describe the capabilities in enough detail to design and
implement track profiles for dynamic track.

Contents
(O0] 011=] | TP UP PR 1
THACK PIOTIHIES ...ttt bbbt et et st esbe b benne e 1
Track Profile HIEIAICRYooiiiieee bbb 3
B I 10 1L ST RP PO RPT PR TPRPRPRPRIN 4
I] 2 o o1 1 o] ISR 5
PIECN CONTIOL ...t b e bbb et b ettt eebesbeene e 6
0 5 R 7
O]] | (=] o U PRSP T PP PSR 8
POIYIING ...t b bbbttt b bbbttt b bbb n e 9
A T () TSP PR PP OPRT PR 10
Track Profile HIerarchy SUMMAIYcooiiiiiiiic e 10
TrACK PIOTIHE FHIES....ceiiiiiicieee ettt bbb anes 10
RS I 1Y/ SR 10
XIMLSEYIE et b ettt ettt et Rttt ne et e neenenns 11
TS e 1L LA o] o PSSR 11
Appendix — More 0N Pitch CONLIOL...........c.oooiiiiice e 14

Track Profiles

Track profiles are cross sections of track — rails, ties, ballast, etc. — used to specify the geometry of
construction. Track profiles are used to generate a mesh of triangles that can be rendered to provide a
visual representation of “track.” The generation process involves sweeping (or extruding) the cross
section along the railroad’s path, whether straight or curved. The method is termed generative or
procedural.

Track Profiles for Dynamic Track -1/14 - January 22, 2017

g | 5 Ballast

,,,,,,,
,,,,,,,,,

////////////

A

Embankment

Scale 1:48 drawing of Northern Pacific track profile for single track, rock ballast roadbed. Rail section
shown is 80 pound ARA-B. Redrawn from references provided courtesy of Dave Nelson.

A representative prototype cross section is shown above. It consists of rail, ties, ballast, and
embankment. We can model whatever we want in as much detail as we want. However, we can’t
handle the circular arcs used for rounds and fillets; we have to break them down into line segments.
And, we must trade off (experimentally) the performance impact of detail with the quality of the
rendering.

The default profile that Open Rails uses for dynamic track is extremely simple:

+1

Default profile for Open Rails dynamic track. The scale is in meters.

The long horizontal line segment (black) models the ballast surface and ties. Details like rounding
and tie detail are suggested by painting those effects on the texture (image) that is wrapped on the mesh
generated. The two short horizontal line segments (green) model the rail tops. The four short vertical
line segments (red) model the rail sides (left and right, inner and outer).

The three categories are used as levels-of-detail (LODs). Suppose that you have a camera positioned
for an external view of the track, low enough so you can see rail sides and high enough so you can see
rail tops. Imagine that you pull back the camera. When you get far enough back, the rail sides will
disappear. (You probably won’t notice.) You’ll still notice the shine off the rail tops. If you continue
moving back, the rail tops will disappear. And, if you continue back farther, eventually the ballast LOD
will disappear. Then, if you reverse direction and move toward the track sections, the LODs will pop
back in (in the reverse order). All this is designed to relieve the load on the processors for complex
scenes.

The method of LOD control described above is called Component Additive: Component because
each LOD is a model of a component, some number of which represent the complete track model.
Additive because, as the camera moves in toward the model, component items are added. There is
another method available to designers called Complete Replacement. There, each LOD item is a
complete model, more or less detailed than the previous LOD item, and, as an LOD item is added, it
replaces the previous one. This topic will be covered in more detail later.

Track Profiles for Dynamic Track -21/14 - January 22, 2017

Track Profile Hierarchy

Track profiles consist of a hierarchy in which an element named TrProfile is at the very top of the
hierarchy. The screenshot on the next page is XML Notepad 2007 ’s view of one of the file formats that
can be used to define a track profile for Open Rails. Note the hierarchy in the tree view in the left-hand
pane that progresses from TrProfile to LOD to LODItem to Polyline to Vertex as you descend in the
tree. Those elements will be discussed in sequence in the subsections below.

Note that there are three LODs. Only the third (Ballast) is expanded to display the full hierarchy.
The first two LODs are collapsed to save space.

Track Profiles for Dynamic Track -3/14 - January 22, 2017

ﬂ AML Motepad - Ch\Users\Walt\Documents\My Projects\Open Rails\Documentation\ Track Pr... E@lﬁ

File Edit View Insert Window Help
R R R TR S I = W ofi | =\ T rackProfiles\Default Profiles\ TrProfile xmijig
Tree View | XSL Output

P =ml verzion="1.0" encoding="utf-8" -
B3 TrProfile I
.......... & zmlins TrProfile.x=d
.......... & Hame Default Dynatrack profile
.......... & LODMethod ComponentAdditive
.......... & ChordSpan 1
---------- & PitchControl ChordLength
---------- & PitchControlScalar 10
H---IC3) LoD
1 H--E3) LoD I
- ﬁ-
f i CutoffRadius 2000
B3 LODItem
.......... & Name Ballast l
---------- & TexName acleantrackl.ace
---------- & ShaderName BlendATexDiff
---------- & LightModelName CptSpeculard -
---------- & LlphaTestMode 0 I
---------- & TexRddrModeName Wrap
---------- & ESD Alternative Texture |1
---------- & MipMaplevelOfDetailBias |-1

- b Folyline

.......... & Name ballast
---------- & DeltaTexCoord 0 0.2083545
E' ﬁ Vertex
.......... & Position -2.5 0.2 0
.......... & Normal 010
---------- & TexCoord -0.153916 -0.280582

g3 Vertex

.......... & Position 2.5 0.2 0
.......... ﬁ Mormal o1 0
---------- & TexCoord 0.862105 -0.280582
< Tl | b -
Error List | Dynamic Help
Description File Line Column
- —

XML Notepad’s view of the hierarchy of the default track profile.

TrProfile

The TrProfile element is at the head (or root) of the hierarchy. A set of attributes and a collection of
LODItems comprise a TrProfile as children. The attributes are:

xmlns Standard for all track profiles that use XML for their
definition. The MSTS Structured Text File (STF) format may
alternatively be used.

Name A descriptive name for the track profile.

Track Profiles for Dynamic Track -4/14 - January 22, 2017

ChordSpan Specifies the angle (degrees) desired for the pitch with which
the profile should be replicated for curves. The profile plus all
its replications form a set of cross sections for the track shape.

LODMethod Identifies the method of LOD control desired —
ComponentAdditive or CompleteReplacement. See LOD
Control below for a detailed explanation.

PitchControl Specifies the method of pitch refinement for curves.. It may
be:
None No refinement desired.
ChordLength If the angle specified by ChordSpan

results in a chord length greater than
PitchControlScalar, the chord length
will be refined to PitchControlScalar.

ChordDisplacement If the angle specified by Chordspan
results in a chord displacement
(distance between the curve and
chord at the point of maximum
deviation) greater than
PitchControlScalar, the chord
displacement will be refined to
PitchControlScalar.

See Pitch Control below for a detailed explanation.

PitchControlScalar Holds the value for ChordLength or ChordDisplacement.

LOD Control

The purpose of LOD control is to handle the way LODs are switched in and out of the rendering
queue as a function of the distance between the camera and the object. Two control schemes are
implemented: ComponentAdditive and CompleteReplacement.

ComponentAdditive — To see how this scheme works, consider the illustration below.

ComponentAdditive
=
0 700 1200 2000

In this example, the blue LOD has a cutoff radius of 700 meters; the green and blue LODs, 1200
and 2000, respectively. That is, when those distances are exceeded, the respective LOD is not added
to the rendering queue (i.e., is not seen). Each LOD models a Component of the object, and the
effect of an observer moving in closer to the camera (from the right end of the distance scale here) is
Additive. That is, as the observer moves closer, each time he hits a cutoff radius boundary, another
component is added.

A good example of this scheme is the default track profile where the red, green, and blue arrows
correspond to ballast and ties (red), rail tops (green), and rail sides (blue). Starting with the camera
close to the object, all three components are seen. As the camera moves away from the object and
the 700-meter range is crossed, the rail sides are no longer rendered. Then, as the camera crosses the
1200-meter range, the rail tops leave the render list. Finally, after the camera crosses the 2000-meter

Track Profiles for Dynamic Track -5/14 - January 22, 2017

range, no component of this object is rendered. Reversing the camera and moving it closer to the
object, the components pop into the scene in reverse order, that is, ballast (red) at 2000 meters, rail
tops (green) at 1200 meters, and rail sides (blue) at 700 meters.

CompleteReplacement — For the alternative scheme, take a look at the following diagram:

CompleteReplacement

0 700 1200 2000

Here, 700, 1200, and 2000 again divide the camera range space into four regions: 0-700 (blue),
700-1200 (green), 1200-2000 (red), and beyond 2000 (nothing). Here, the rules are different: Only
one LOD is displayed for a given camera position. And that is the LOD that has a CutoffRadius
corresponding to the range that the camera is in, that is, 700 (blue), 1200 (green), and 2000 (red).
Each LOD must constitute an appropriate Complete model for that range (hence the Complete in
CompleteReplacement).

Note that, as the camera crosses a region boundary while moving away from the object, an LOD
leaves the scene and is replaced by another (except for the last — beyond-2000). This accounts for
the Replacement in CompleteReplacement.

Which of these methods should be used is strictly a designer preference. Note that, with either of
these two schemes, it is required that the LOD items be arranged in ascending order of CutoffRadius.

Pitch Control

ChordSpan (described above) is the first level of control of the pitch with which profiles are
generated to define a mesh for a model of a curved section of dynamic track. Pitch refers to the angle
subtended by two adjacent profiles, which is a constant for any particular circular-arc section.

ChordSpan pitch control leaves something to be desired for large-radius curves. Hence, two
alternative methods have been introduced for refinement of ChordSpan control — ChordLength and
ChordDisplacement. The following illustrations define these quantities:

- 0.0180

8.7265

The diagram above is an “eye test.” It depicts a curve, which is supposed to be a solid black arc, but
it is broken up by interference from the green straight line segments which approximate the circular arc.
The dashed black line is tangent to the arc at its point of origin (right). A tiny cross marks the origin of
the arc (right). The curve is of 500-meter radius. The diagram depicts one pitch unit of one degree.
There is a second tiny cross at the top of the left-hand extension line for the 8.7265 dimension. The
second cross marks the point where the curve has deflected one degree (one pitch unit). In fact, the left-
hand extension line has a severe case of the “jaggies” because, superimposed with it is a one-degree
radial line to the center of the arc.

Track Profiles for Dynamic Track -6/14 - January 22, 2017

The green line segments (two of them) are chords spanning one-degree segments. The 8.7265
(meters) dimension is the length of the chord. It is this length that is tested for ChordLength control.

ChordLength Control — Under ChordLength control, when ChordSpan control (one degree in this
example) yields a chord length that is greater than PitchControlScalar , then the pitch will be refined
such that the chord length is exactly PitchControlScalar.

One suggested “rule of thumb” is that target chord lengths should be held to a maximum in the
10.0-12.5 meter range.

ChordDisplacement Control — Referring again to the diagram above, the other dimension illustrated
(the 0.0190-meter dimension) refers to the miniscule distance between the arc and chord at its point
of maximum excursion, which is at the center of the chord. Just to be sure that this is clear, here is a
“blow-up” of the dimension. Note that there is, in fact, a miniscule red line segment that identifies
the maximum excursion.

Under ChordDisplacement control, when ChordSpan control fails to produce a chord
displacement less than PitchControlScalar, then the pitch will be refined such that the chord
displacement is exactly PitchControlScalar.

One suggested guideline for profile designers is to consider a target chord displacement as a
fraction of railhead width. For example, the 19 mm chord displacement in this one-degree pitch
example is 28 percent of a 68 mm railhead width.

For more on pitch control, see the Appendix.

Returning to the description of the structure of a track profile, after the root item, TrProfile, next in
the hierarchy is a list of the one or more LODs that comprise the track profile, arranged in order of
increasing CutoffRadius (see below).

LOD

The only purpose for an LOD is to define the component model for a ComponentAdditive model or
the complete model for a CompleteReplacement model. Each LOD has an associated CutoffRadius that
defines the range of camera positions where the LOD is seen. An LOD has only one attribute:

CutoffRadius The end-of-range distance between the center of this track
section and the camera. This LOD will not be rendered when
this distance is exceeded. (The start-of-range will be the next
previous LOD with a CutoffRadius less than this one.)

LODs give control over model complexity as a function of distance of the object from the camera.
As the distance increases, the model can become less complex, which economizes hardware/software
performance.

Each LOD consists of one or more LODItems.

Track Profiles for Dynamic Track -7114 - January 22, 2017

LODItem

Each LODItem that follows as a child of an LOD serves a single purpose: It serves as a (geometry,
material) unit. All material properties (including texture) are introduced at this level.

Again, attributes and a collection comprise a LODItem. The attributes are:

Name A descriptive name for the LOD.

TexName The filename (with file extension) for the texture to be used for
this LOD.

ShaderName A material property that controls how light reflects off the

surface of the LOD item:
Diffuse Diffuse light reflected.
TexDiff Diffuse light reflected.

BlendATexDiff Diffuse light reflected with alpha-
testing and blending.

AddATexDiff Diffuse light reflected with alpha-
testing and blending.

Tex Diffuse light not reflected.

BlendATex Diffuse light not reflected with alpha-
testing and blending.

AddATex Diffuse light not reflected with alpha-

testing and blending.

LightModelName

A material property modeling how an LOD item is lit.

DarkShade Darkly shaded.

OptHalfBright Half lit.

OptFullBright Fully lit.

Cruciform Simulates lighting on vegetation.
CruciformLong Simulates lighting on vegetation.
OptSpecular0 Dull finish.

OptSpecular25 Shiny.

OptSpecular750 Very shiny.

AlphaTestMode

A material property that controls whether or not alpha-testing
is done.

0 No alpha-testing.

1 Alpha-testing is performed, and, if the
texture’s alpha channel is less than
ReferenceAlpha, the texture is opaque
at a pixel; otherwise it is transparent.
ReferenceAlpha is 10 for all of the
shaders with “ATex” in their names
and 200 otherwise.

TexAddrModeName

A material property that determines how the texture gets

Track Profiles for Dynamic Track -8/14 - January 22, 2017

applied to the surface of the LOD item.

Wrap Tile the texture at every integer value
of a texture coordinate (u, v). For
example, for u values between 0 and
3, the texture is repeated three times.

Mirror Similar to Wrap, except that the
texture is flipped at every integer
value of (u, v).

Clamp Texture coordinates less than 0 are set
to the texture color at 0, and texture
coordinates greater than 1 are set to
the texture color at 1.

Border Texture coordinates outside the range
0-1 are set to the border color.

ESD_Alternative_Texture Equivalent to the MSTS parameter of the same name. This
integer indicates where OpenRails should look to find
alternative textures, depending on weather and time-of-day:

0: The LODItem has no alternative texture. The
base texture is used all of the time.

1: The LODItem has two textures, the base texture
and one in the Snow subdirectory.

252: The LODItem has alternative textures to cover
seasonal variations with and without snow.
These should go in Summer, SummerSnow,
Autumn, AutumnSnow, Winter, and WinterSnow
subdirectories.

256: The LODItem has one alternative texture, in the
Night subdirectory.

MipMapLevelOfDetailBias | A number that can be “tweaked” to sharpen or blur textures.
Negative changes sharpen; positive changes blur. (0 means no
bias.)

The collection that follows the attributes of an LODItem is a collection of Polylines.

The last two LODItems are not expanded in the XML Notepad screenshot to save space. In XML
Notepad, the LODItems can be expanded to show their Polyline children simply by clicking the ‘+’ sign.

Polyline

A Polyline element is a contiguous” set of straight 3
line segments that connect a set of points. For example, 1 3 1
consider the illustration to the right. The part labeled “0”

is not a polyline; it’s a point. “1-2” is a polyline, a 4 5
single-segment polyline. “3 —4 —5” is a two-segment g
polyline. “6—7 -8 -9 — 6" is a four-segment closed
0 2
9 8

* Contiguous — arranged head-to-tail.
Track Profiles for Dynamic Track -9/14 - January 22, 2017

polyline, rightfully called a polygon. “10—11 12— 13" is not a polyline; it is two polylines.

Each Polyline element is defined in the track profile file by a set of attributes and a collection of
child elements. The attributes follow:

Name A descriptive name for the polyline.

DeltaTexCoord The change in texture coordinates (Au, Av) per meter along the
path of the track centerline.

It is obvious from the examples above that a polyline is defined by a collection of points, in addition
to its attributes. We term these vertices because they describe more than just the location. The
collection that constitutes the child elements of a polyline is a collection of vertices.

Vertex

A Vertex, by definition, is at the bottom of the hierarchy tree because it has no children. It has only
attributes, which are as follows:

Position The position vector (X, y, z) at the point relative to the local
origin (root) of the track section.

Normal A unit normal vector (nx, ny, nz) at the point, which is used for
lighting calculations.

TexCoord A texture coordinate (u, v) at the point, which is used for
texture wrapping.

Track Profile Hierarchy Summary
Before leaving the topic of the track profile hierarchy, it is important to emphasize quantities:

e There is one and only one TrProfile, which serves as the root of the hierarchy tree.

e There may be one or more LODs; there must be at least one. The LODs must be sorted in
TrProfile in order of increasing CutoffRadius. Multiple LODs with the same CutoffRadius
are not allowed.

e There may be one or more LODItems for each LOD; there must be at least one.

e There may be one or more Polylines for each LODItem; there must be at least one.

e There may be two or more Vertices for each Polyline; there must be at least two.

Track Profile Files

Track profiles are defined by external files. Currently, they all have a common file name of
“TrProfile.”” The file extension changes from style to style. If Open Rails finds no TrProfile.xxx in the
TrackProfiles folder for a route, where xxx is a supported file extension, then it builds a default track
profile in memory. The default profile looks identical to the one you’re used to for dynamic track.

Currently, two track profile file styles (or formats) are supported — MSTS STF-style and XML-
style.” The search order is XML first, STF next; if neither exist, then the default is built.
STF-Style

MSTS veterans probably have experience with the complete parenthesis syntax of ENG, WAG, etc.
files. Take a look at what an STF-style track profile file looks like for the default profile (page 12).

* In the future, we intend to extend this to multiple profiles, probably distinctly named.

+ Hopefully, experience will reveal the superior style, and one will be deprecated in the future.
Track Profiles for Dynamic Track -10/14 - January 22, 2017

It’s relatively clean when formatted this way, and you may be used to it. The down side is that
validation is minimal, and you may have problems figuring out where you made an error. (But MSTS
veterans don’t make errors.")

The MSTS-style track profile files have a file extension of “.stf”.
All STF files must have a SIMIS-style header on Line 1 which is specific to profiles. It must be:

“SIMISAQRQRRRRERERERRIINXOpPOL ” (without the quotation marks).
XML-Style

You’ve already seen what XML-style track profile files look like when viewed with XML Notepad
2007. To see what an XML track profile really looks like, see page 13.

There’s not a lot of difference. The principal difference is that XML uses tags (< ... >) to bound
elements and name = value syntax to define attributes. Also, XML bounds all values with quotes. So,
there’s a little bit more typing required by the XML style. But then you’ll probably be using an XML
editor (e.g., XML Notepad 2007).

But wait. There is one additional file required by the XML style — TrProfile.xsd. But there is one of
these provided for you, and you had better not modify it. Modify it, and the code breaks!

TrProfile.xsd defines (in XML) the syntax of a track profile. It drives the validation code in Open
Rails used to check the syntax of your track profile (TrProfile.xml).

All you have to remember is to put your TrProfile.xml and the standard TrProfile.xsd in the
TrackProfiles folder in the root folder of the desired route. (If there is sufficient interest in support for
XML, TrProfile.xsd will be treated as Open Rails “content,” and you won’t have to worry about it.)

Installation
Installation is simple:

1. Select astyle: STF or XML.
2.

a. Ifthere is no TrackProfiles folder in the root folder of the desired route, make one.

b. If STF, copy TrProfile.stf to the route’s TrackProfiles folder. If there is a TrProfile.xml
in the folder, delete it, rename it, or move it elsewhere. (TrProfile.xml takes precedence
over TrProfile.stf if both are in the folder.)

c. If XML, copy TrProfile.xml and TrProfile.xsd to the route’s TrackProfiles folder.

3. Start the game. (When the game loads, you’ll notice an additional item logged on the

“Loading ...” line. Itis “TRP,” which stands for TRackProfile. “Default,” “STF,” or

“XML” is output in parenthesis following the “TRP.”

* They’ll blame it on the programmer.

Track Profiles for Dynamic Track -11/14 - January 22, 2017

SIMISAGRRREEERREJIINXOPOL

TrProfile (Name ("Default Dynatrack Profile") LODMethod ("ComponentAdditive") ChordSpan (1)
PitchControl ("ChordLength") PitchControlScalar (10)
LOD (CutoffRadius (700)
LODItem (Name ("Railsides") TexName ("acleantrack2.ace") ShaderName ("TexDiff")
LightModelName ("OptSpecularQ") AlphaTestMode (0) TexAddrModeName ("Wrap")
ESD Alternative Texture (0) MipMapLevelOfDetailBias (0)
Polyline (Name ("left outer") DeltaTexCoord (0.1673372 0)
Vertex (Position (-0.8675 0.200) Normal (-1 0 0) TexCoord (-0.139362
Vertex (Position (-0.8675 0.325) Normal (-1 0 0) TexCoord (-0.139363
)
Polyline (Name ("left inner") DeltaTexCoord (0.1673372 0)
Vertex (Position (-0.7175 0.325) Normal (1 0 O) TexCoord (-0.139363
Vertex (Position (-0.7175 0.200) Normal (1 0 O) TexCoord (-0.139362
)
Polyline (Name ("right inner") DeltaTexCoord (0.1673372 0)
Vertex (Position (0.7175 0.200) Normal (-1 0 O) TexCoord (-0.139362
Vertex (Position (0.7175 0.325) Normal (-1 0 0) TexCoord (-0.139363
)
Polyline (Name ("right outer") DeltaTexCoord (0.1673372 0)
Vertex (Position (0.8675 0.325) Normal (1 0 0) TexCoord (-0.139363
Vertex (Position (0.8675 0.200) Normal (1 O 0) TexCoord (-0.139362
)
)
)
LOD (CutoffRadius (1200)
LODItem (Name ("Railtops") TexName ("acleantrack2.ace") ShaderName ("TexDiff")
LightModelName ("OptSpecular25") AlphaTestMode (0) TexAddrModeName ("Wrap")
ESD Alternative Texture (0) MipMapLevelOfDetailBias (0)
Polyline (Name ("right") DeltaTexCoord (0.0744726 0)
Vertex (Position (-0.8675 0.325) Normal (0 1 0) TexCoord (0.232067
Vertex (Position (-0.7175 0.325) Normal (0 1 0) TexCoord (0.232067
)
Polyline (Name ("left") DeltaTexCoord (0.0744726 0)
Vertex (Position (0.7175 0.325) Normal (0 1 0) TexCoord (0.232067
Vertex (Position (0.8675 0.325) Normal (0 1 0) TexCoord (0.232067
)
)
)
LOD (CutoffRadius (2000)
LODItem (Name ("Ballast"™) TexName ("acleantrackl.ace") ShaderName ("BlendATexDiff"
LightModelName ("OptSpecularO") AlphaTestMode (0) TexAddrModeName ("Wrap")
ESD Alternative Texture (1) MipMapLevelOfDetailBias (-1)
Polyline (Name ("ballast") DeltaTexCoord (0 0.2088545)
Vertex (Position (-2.5000 0.200) Normal (0 1 0) TexCoord (
Vertex (Position (2.5000 0.200) Normal (0 1 0) TexCoord (

Track Profiles for Dynamic Track

MSTS-Style Track Profile (TrProfile.stf)

-12/14 -

0.101563
0.003906

0.003906
0.101563

0.101563
0.003906

0.003906
0.101563

0.126953
0.224609

0.126953
0.224609

)

-0.153916 -0.280582
0.862105 -0.280582

)
)

)
)

)
)

)
)

)
)

)
)

August 9, 2008

<?xml version="1.0" encoding="utf-8"?>
<TrProfile xmlns="TrProfile.xsd" Name="Default Dynatrack profile" LODMethod="ComponentAdditive" ChordSpan="1"
PitchControl="ChordLength" PitchControlScalar="10">
<LOD CutoffRadius="700">
<LODItem Name="Railsides" TexName="acleantrack2.ace" ShaderName="TexDiff" LightModelName="OptSpecular0"
AlphaTestMode="0" TexAddrModeName="Wrap" ESD Alternative Texture="0" MipMapLevelOfDetailBias="0">
<Polyline Name="left outer" DeltaTexCoord="0.1673372 0">
<Vertex Position="-0.8675 0.2 0" Normal="-1 0 0" TexCoord="-0.139362 0.101563" />
<Vertex Position="-0.8675 0.325 0" Normal="-1 0 0" TexCoord="-0.139363 0.003906"™ />
</Polyline>
<Polyline Name="left inner" DeltaTexCoord="0.1673372 0">
<Vertex Position="-0.7175 0.325 0" Normal="1 0 0" TexCoord="-0.139363 0.003906" />
<Vertex Position="-0.7175 0.2 0" Normal="1 0 0" TexCoord="-0.139362 0.101563" />
</Polyline>
<Polyline Name="right inner" DeltaTexCoord="0.1673372 0">
<Vertex Position="0.7175 0.2 0" Normal="-1 0 0" TexCoord="-0.139362 0.101563" />
<Vertex Position="0.7175 0.325 0" Normal="-1 0 0" TexCoord="-0.139363 0.003906" />
</Polyline>
<Polyline Name="right outer" DeltaTexCoord="0.1673372 0">
<Vertex Position="0.8675 0.325 0" Normal="1 0 0" TexCoord="-0.139363 0.003906"™ />
<Vertex Position="0.8675 0.2 0" Normal="1 0 0" TexCoord="-0.139362 0.101563" />
</Polyline>
</LODItem>
</LOD>
<LOD CutoffRadius="1200">
<LODItem Name="Railtops" TexName="acleantrack2.ace" ShaderName="TexDiff" LightModelName="OptSpecular25"
AlphaTestMode="0" TexAddrModeName="Wrap" ESD Alternative Texture="0" MipMapLevelOfDetailBias="0">
<Polyline Name="right" DeltaTexCoord="0.0744726 0">
<Vertex Position="-0.8675 0.325 0" Normal="0 1 0" TexCoord="0.232067 0.126953" />
<Vertex Position="-0.7175 0.325 0" Normal="0 1 0" TexCoord="0.232067 0.224609" />
</Polyline>
<Polyline Name="left" DeltaTexCoord="0.0744726 0">
<Vertex Position="0.7175 0.325 0" Normal="0 1 0" TexCoord="0.232067 0.126953" />
<Vertex Position="0.8675 0.325 0" Normal="0 1 0" TexCoord="0.232067 0.224609" />
</Polyline>
</LODItem>
</LOD>
<LOD CutoffRadius="2000">
<LODItem Name="Ballast" TexName="acleantrackl.ace" ShaderName="BlendATexDiff" LightModelName="OptSpecularQ"
AlphaTestMode="0" TexAddrModeName="Wrap" ESD Alternative Texture="1" MipMapLevelOfDetailBias="-1">
<Polyline Name="ballast" DeltaTexCoord="0 0.2088545">
<Vertex Position="-2.5 0.2 0" Normal="0 1 0" TexCoord="-0.153916 -0.280582" />
<Vertex Position="2.5 0.2 0" Normal="0 1 0" TexCoord="0.862105 -0.280582" />

</Polyline>
</LODItem>
</LOD>
</TrProfile>
XML Track Profile (TrProfile.xml)
Track Profiles for Dynamic Track -13/14 -

August 9, 2008

Appendix — More on Pitch Control

For more insight into pitch control, consider the following plot:

GRAPHPAK
File Edit

13

ANGLE tDEGREES}

L M L PR L |
GlD 100G 10G3 1000G
RADIUS (METERS?

The vertical axis of the plot represents the pitch angle of a series of straight-line segment used as an
approximation to a circular-arc curve; the horizontal axis represents the radius of the curve. The green
line represents a constant one-degree pitch angle, independent of radius — what you get with a
ChordSpan control scheme.

Look at the blue curve, which is a plot of the pitch angle required to hold a 10-meter chord length as
a function of curve radius. Note that it crosses the one-degree line at about 600 meters radius. (Note
that the radius axis has a logarithmic scale.) This tells you that, above 600 meters radius, you will be
missing a target of 10-meter chord length with a one-degree chord span. Similarly, you will be missing
a target of 12.5-meter chord length (magenta curve) for radii above about 700 meters. If you seek a
target of 34 mm chord displacement (half a rail width), you will miss it with a one-degree chord span for
radii above about 900 meters.

The ChordLength and ChordDisplacement scheme are, in fact, algebraically related. If L is the
chord length and d is the chord displacement, then:
L (1 9) = 2dsi o
Ccos) = Sin)
for any given chord span 6. Thus, L and d are linearly related for any given chord span, 6. For
example, for a one-degree chord span:
d = .00218 L

Thus, for a one-degree chord span, a 10-meter chord length would yield a chord displacement of 21.8
mm.

Track Profiles for Dynamic Track -14/14 - August 9, 2008

	Contents
	Track Profiles
	Track Profile Hierarchy
	TrProfile
	LOD Control
	Pitch Control

	LOD
	LODItem
	Polyline
	Vertex
	Track Profile Hierarchy Summary

	Track Profile Files
	STF-Style
	XML-Style

	Installation
	Appendix – More on Pitch Control

