

Revised March 18, 2016

Reference Manual
Release 1.1

i

Contents1

1 Legal ... 1

1.1 Warranty ... 1

1.2 Properties Acknowledgment ... 1

1.3 Copyright Acknowledgment and License .. 1

2 New in This Release ... 2

3 Introduction ... 3

3.1 What is Open Rails? ... 3

3.2 About Open Rails ... 3

3.3 Does Open Rails Require You to Have MSTS Installed? .. 4

3.4 Community ... 4

3.5 Raildriver Support ... 4

3.6 Highlights of the Current Version .. 5

4 Use of MSTS Files by Open Rails ... 6

4.1 Overview .. 6

4.2 MSTS Directories Used by Open Rails ... 6

4.3 MSTS Files Used in Whole or Part by Open Rails .. 6

4.4 Using a Non-MSTS Folder Structure .. 7

4.5 Original MSTS Files Usually Needed for Added MSTS-Compatible Content 8

5 Getting Started .. 9

5.1 Installation Profiles ... 9

5.2 Updating OR .. 9

5.3 Further General Buttons ... 10

5.4 Preliminary Selections .. 10

5.5 Gaming Modes ... 10

6 Open Rails Options ... 13

6.1 General Options ... 13

6.2 Audio Options ... 17

6.3 Video Options ... 18

6.4 Simulation Options ... 22

6.5 Keyboard Options ... 24

6.6 Data Logger Options .. 25

6.7 Evaluation Options ... 26

6.8 Content Options ... 27

1 Cover picture by Max Brisben

ii

6.9 Updater Options ... 28

6.10 Experimental Options ... 29

7 Driving a Train .. 35

7.1 Game Loading .. 35

7.2 Entering the Simulation .. 35

7.3 Open Rails Driving Controls ... 35

7.4 Driving aids .. 37

7.5 Dispatcher Window .. 48

7.6 Additional Train Operation Commands ... 50

7.7 Autopilot Mode ... 51

7.8 Changing the Train Driven by the Player .. 52

7.9 Changing the View ... 55

7.10 Toggling Between Windowed Mode and Full-screen .. 57

7.11 Modifying the Game Environment ... 58

7.12 Screenshot - Print Screen... 59

7.13 Suspending or Exiting the Game .. 59

7.14 Save and Resume .. 60

7.15 Save and Replay .. 62

7.16 Analysis Tools .. 64

7.17 OpenRailsLog.txt Log file ... 74

7.18 Code-embedded Logging Options .. 74

7.19 Testing in Autopilot Mode ... 74

8 Open Rails Physics ... 75

8.1 Train Cars (WAG, or “Wagon” Part of ENG file).. 75

8.2 Engine – Classes of Motive Power ... 79

8.3 Electric Locomotives ... 83

8.4 Steam Locomotives .. 85

8.5 Engines – Multiple Units in Same Consist or AI Engines .. 102

8.6 Open Rails Braking .. 102

8.7 Dynamically Evolving Tractive Force .. 107

8.8 Curve Resistance - Theory ... 108

8.9 Curve Resistance - Application in OR ... 110

8.10 Super Elevation (Curve Speed Limit) . Theory .. 112

8.11 Super Elevation (Curve Speed Limit) Application in OR ... 116

8.12 Tunnel Friction -Theory .. 118

8.13 Tunnel Friction - Application in OR ... 119

8.14 OR-Specific “Include” Files for Modifying MSTS File Parameters 121

8.15 Train Control System .. 123

iii

9 Further Open Rails Rolling Stock Features ... 126

9.1 Train Engine Lights .. 126

9.2 Tilting trains .. 126

9.3 Freight animations and pickups .. 126

9.4 Special Steam Effects for Steam Locomotives. .. 131

10 Open Rails Train Operation .. 132

10.1 Open Rails Activities ... 132

10.2 Open Rails AI ... 132

10.3 Control Mode .. 132

10.4 Track Access Rules .. 136

10.5 Deadlock Processing .. 136

10.6 Reversal Points .. 137

10.7 Waiting Points .. 138

10.8 Signals at Station Stops ... 138

10.9 Speedposts and Speed Limits Set by Signals... 139

10.10 Further Features of AI Train Control ... 139

10.11 Location-linked Passing Path Processing ... 140

10.12 Other Comparisons Between Running Activities in ORTS or MSTS 141

10.13 Extended AI Train Shunting .. 142

10.14 Signal related files .. 147

10.15 OR-specific Signaling Functions ... 148

10.16 OR-Specific Additions to Activity Files .. 159

11 Timetable Mode .. 163

11.1 Introduction .. 163

11.2 General .. 163

11.3 Timetable Definition .. 164

11.4 Timetable Data Details ... 165

11.5 Additional Notes on Timetables .. 178

11.6 Example of a Timetable File ... 182

11.7 What tools are available to develop a Timetable? ... 182

12 Open Rails Multi-Player .. 183

12.1 Goal ... 183

12.2 Getting Started ... 183

12.3 Requirements ... 183

12.4 Technical Issues ... 183

12.5 Technical Support .. 183

12.6 Starting a Multi-Player Session ... 184

12.7 In-Game Controls ... 185

iv

12.8 Summary of Multi-Player Procedures ... 188

12.9 Possible Problems .. 188

12.10 Using the Public Server .. 189

13 Multi-Player: Setting up a Server from Your Own Computer ... 190

13.1 IP Address .. 190

13.2 Port Forwarding .. 191

14 Open Rails Sound Management ... 194

14.1 OR vs. MSTS Sound Management ... 194

14.2 .sms Instruction Set .. 194

14.3 Discrete Triggers .. 194

14.4 Variable Triggers .. 196

14.5 Sound Loop Management .. 197

14.6 Testing Sound Files at Runtime .. 197

15 Open Rails Cabs ... 198

15.1 2D Cabs ... 198

15.2 High-resolution Cab Backgrounds and Controls ... 198

15.3 3D cabs .. 201

16 OR-Specific Route Features ... 204

17 Developing OR Content .. 205

17.1 Rolling Stock .. 205

17.2 Routes .. 205

17.3 Activities ... 205

17.4 Testing and Debugging Tools ... 205

17.5 Open Rails Best Practices .. 206

17.6 Support... 206

18 Version 1.1 Known Issues ... 206

18.1 Empty “Effects” Section in .eng File .. 206

19 In Case Of Malfunction ... 207

19.1 Introduction .. 207

19.2 Overview of Bug Types .. 207

19.3 “Maybe-Bugs” ... 207

19.4 Decided bugs ... 208

19.5 Additional Notes ... 209

19.6 Summary: Bug Report Checklists ... 209

19.7 Bug Status in Launchpad ... 210

19.8 Disclaimer .. 210

20 Open Rails Software Platform ... 211

v

20.1 Architecture .. 211

20.2 Open Rails Game Engine ... 211

20.3 Frames per Second (FPS) Performance ... 212

20.4 Game Clock and Internal Clock .. 212

20.5 Resource Utilization .. 212

20.6 Multi-Threaded Coding ... 212

21 Plans and Roadmap .. 214

21.1 User Interface ... 214

21.2 Operations .. 214

21.3 Open Rails Route Editor ... 214

22 Acknowledgements ... 215

23 Appendices ... 217

23.1 Units of Measure .. 217

1

1 Legal

1.1 Warranty

NO WARRANTIES: openrails.org disclaims any warranty, at all, for its Software. The Open Rails

software and any related tools, or documentation is provided “as is” without warranty of any kind,

either express or implied, including suitability for use. You, as the user of this software,

acknowledge the entire risk from its use. See the license for more details.

1.2 Properties Acknowledgment

Open Rails, Open Rails Transport Simulator, ORTS, openrails.org, Open Rails symbol and

associated graphical representations of Open Rails are the property of openrails.org. All other third

party brands, products, service names, trademarks, or registered service marks are the property of

and used to identify the products or services of their respective owners.

1.3 Copyright Acknowledgment and License

©2009-2015 openrails.org This document is part of Open Rails.

Open Rails is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the

License, or any later version.

You should have received a copy of the GNU General Public License as part of the Open Rails

distribution in Documentation\Copying.txt. If not, see http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

2

2 New in This Release
Here are the features which have been added or substantially changed since v1.0 was released.

 Further enhanced compatibility with MSTS content

 Extended engine brake to tenders (A6ET brake)

 Keyboard commands for fast throttle and brake zeroing

 Support for domain names in multiplayer

 Further improvements towards realistic train physics, among this steam heating for

steam locomotives

 Multiple freight animations on single wagon or engine; wagon freight load/unload

 Water refueling from trough

 New sound triggers related to brakes

 New sound triggers related to curve force (e.g. for flange squeal)

 Support for auxiliary tenders

 Blended braking

 Switching to manual mode also at speed

 Direct access to OR documentation from main menu

Some experimental features have been added which you can turn on; some of them may affect

performance. They include:

 The ability to change the driven train during an activity

 Weather controlled within an activity (dynamic weather)

 Conditional permission for AI trains to pass a signal at stop

 Further improvements to AI train shunting

 Optional runtime correction for braking parameters (improves driveability)

The overall code architecture has been cleaned up, providing better separation between

simulation and viewing.

… and again, many many bugs were removed.

3

3 Introduction

3.1 What is Open Rails?

Open Rails software (OR) is a community developed and maintained project from openrails.org. Its

objective is to create a new transport simulator platform that is first, compatible with routes,

activities, consists, locomotives, and rolling stock created for Microsoft Train Simulator (MSTS); and

secondly, a platform for future content creation freed of the constraints of MSTS (in this manual

MSTS means MSTS with MSTS Bin extensions, if not explicitly stated in a different way).

Our goal is to enhance the railroad simulation hobby through a community-designed and

supported platform built to serve as a lasting foundation for an accurate and immersive simulation

experience. By making the source code of the platform freely available under the GPL license, we

ensure that OR software will continually evolve to meet the technical, operational, graphical, and

content building needs of the community. Open architecture ensures that our considerable

investment in building accurate representations of routes and rolling stock will not become

obsolete. Access to the source code eliminates the frustration of undocumented behavior and

simplifies understanding the internal operation of the simulator without the time-consuming trial

and error-prone experimentation typically needed today.

Open Rails software is just what the name implies – a railroad simulation platform that’s open for

inspection, open for continuous improvement, open to third parties and commercial enterprises,

open to the community and, best of all, an open door to the future.

3.2 About Open Rails

To take advantage of almost a decade of content developed by the train simulation community,

Open Rails software is an independent game platform that has backward compatibility with MSTS

content. By leveraging the community’s knowledge base on how to develop content for MSTS,

Open Rails software provides a rich environment for both community and payware contributors.

The primary objective of the Open Rails project is to create a railroad simulator that will provide

‘true to life’ operational experience. The Open Rails software is aimed at the serious train

simulation hobbyist; someone who cares about locomotive physics, train handling, signals, AI

behavior, dispatching, and most of all running trains in a realistic, prototypical manner. While the

project team will strive to deliver an unparalleled graphical experience, ‘eye candy’ is not the

primary objective of Open Rails software.

By developing a completely new railroad simulator, Open Rails software offers the potential to

better utilize current and next generation computer resources, like graphics processing units

(GPUs), multi-core CPUs, advanced APIs such as PhysX, and widescreen monitors, among many

others. The software is published so that the user community can understand how the software

functions to facilitate feedback and to improve the capabilities of Open Rails software.

Open Rails is published under the GPL license which is "copyleft"1 to ensure that the source code

always remains publicly available.

1http://www.gnu.org/copyleft/

http://www.openrails.org/
http://www.gnu.org/copyleft/

4

3.3 Does Open Rails Require You to Have MSTS Installed?

No, it is not required by the Open Rails software itself. However. a great deal of the content

accessed by OR includes files originally delivered with MSTS (e.g., tracks or general sounds).

These files must be obtained from a properly licensed installation of MSTS.

There are examples where no MSTS content is used (often payware) and in such cases Open

Rails does not require MSTS to be installed. .Read here for further detail.

In all cases, all content files (original or MSTS) must be organized in an MSTS-compatible folder

structure. Such a structure is described here. In this manual such a folder structure will be called

an “MSTS installation” for clarity, even if this wording is not completely correct.

A proof that Open Rails itself does not need an MSTS installation at all to run is e.g. this route.

3.4 Community

Open Rails software is offered without technical support. Users are encouraged to use their

favorite train simulation forums to get support from the community. We suggest:

 Train-Sim.Com http://forums.flightsim.com/vbts/

 UK Train Sim http://forums.uktrainsim.com/index.php

 Elvas Tower http://www.elvastower.com/forums/index.php?/index

For users interested in multiplayer sessions, a forum is set up for you to seek and announce

hosting sessions: http://www.tsimserver.com.

3.5 Raildriver Support

Open Rails offers native support for the RailDriver Desktop Train Cab Controller. Instructions for

setting up RailDriver for Open Rails are included in the Installation Manual that is included with the

Open Rails Installer, or it can be downloaded separately from the Open Rails website.

http://www.burrinjuck.coalstonewcastle.com.au/route/route-install/
http://forums.flightsim.com/vbts/
http://forums.uktrainsim.com/index.php
http://www.elvastower.com/forums/index.php?/index
http://www.tsimserver.com/

5

3.6 Highlights of the Current Version

3.6.1 Focus on Compatibility

With this release the announced goal has been reached to make as much of the existing MSTS

content as possible run in Open Rails. The development team's initial focus has been to provide a

fairly complete visual replacement for MSTS that effectively builds on that content, achieving all

the compatibility that is worthwhile, at the same time delivering a system which is faster and

more robust than MSTS.

3.6.2 Focus on Operations

Release 1.1 clears the way to improving on MSTS in many ways which can be summed up as

moving from Foundation to Realism and eventually to Independence, and already includes

features that are beyond MSTS. Non-player trains can have movement orders (i.e. pickups,

drop offs) based on files in MSTS format. The player can change driven train.

3.6.3 Focus on Realistic Content

The physics underlying adhesion, traction, engine components and their performance are based

on a world-class simulation model that takes into account all of the major components of diesel,

electric and steam engines. This includes elements like friction resistance in curves and tunnels, a

very sophisticated steam locomotive physics model, many optional curves to define precise

locomotive physics, coupler forces and much more.

Existing models that do not have the upgraded Open Rails capabilities continue, of course, to

perform well.

In the package of this version ancillary programs (“tools”) are also delivered, including:

 Track Viewer: a complete track viewer and path editor

 Timetable Editor: a tool for preparing Timetables

6

4 Use of MSTS Files by Open Rails

4.1 Overview

4.1.1 Your MSTS Installation and Custom Installations for Open Rails

Open Rails reads only the content folders in each of the MSTS installations you choose to identify

for it and will do so without modifying any of those files. None of the MSTS program folders are

used and no changes to the MSTS directory tree are required.

Open Rails may also be used to read a non-MSTS directory structure that you create.

This document uses the term Root Folder to designate the parent folder of any MSTS or OR-

Specific directory tree (.e.g, \Train Simulator is the Root Folder for MSTS).

4.2 MSTS Directories Used by Open Rails

Open Rails software reads and uses all of the data found in many MSTS directories:

 \Consists

 \Paths

 \Services

 \Shapes

 \Sounds

 \Textures

 \Terrtex

 \Tiles

 \Traffic

 \Trainset

 \World

Open Rails uses a file parser to read the MSTS files and will locate many errors that are missed or

unreported by the MSTS software or by other utilities. In most cases, the Open Rails software will

ignore the error in the file and run properly. Open Rails software logs these errors in a log file on the

user’s desktop. This log file may be used to correct problems identified by the Open Rails software.

The parser will also correct some of the problems that stumped MSTS. For example, if a texture is

missing Open Rails will substitute a neutral gray texture and continue.

4.3 MSTS Files Used in Whole or Part by Open Rails

4.3.1 Route Files

Open Rails software uses some of the data in several MSTS Route files, depending on the MSTS

features supported by Open Rails:

 Route Database file (.rdb) - CarSpawner is supported.

 Reference File (.ref) – Open Rails does not yet provide a Route Editor.

 Track Database file (.tdb) – supported.

7

 Route File (.trk) – Level Crossings and overhead wires are supported.

 Sigcfg (.dat) file – Signal & scripting capabilities are supported.

 Sigscr (.dat) file – Signal & scripting capabilities are supported.

 Speedpost (.dat) file – Supported.

 Spotter (.dat) file – Supported.

 Ssource (.dat) file – Supported.

 Telepole (.dat) file – Supported.

 Tsection (.dat) file – Supported.

 Ttype (.dat) file – Supported.

 Hazards (.haz) file – Supported.

4.3.2 Environment .env files

Open Rails software does not support advanced water dynamic effects.

4.3.2.1 OR Defined Weather

Open Rails uses its own sky, cloud, sun, moon and precipitation effects developed exclusively for

it. When using the “Explore Route” feature you may choose season, weather, and time of day.

When using the “Run Activity” feature they are read from the activity file.

4.3.2.2 OR Weather using MSTS Compatibility

Open Rails can replace MSTS Environmental displays by its own (e.g., Kosmos)

4.3.3 Activities

Many passenger and freight activities created using the MSTS activity editor run without problems

in Open Rails.

Some Activities created using the MSTS activity editor will have slightly different behavior as

compared to running in MSTS. This is often due to slightly different train performance resulting

from differences in how each simulator handles train physics.

A few activities fail to run at all. This appears to be due to the creativity of Activity Designers who

have found ways to do things wholly unanticipated by the Open Rails Team. As these are

discovered the Open Rails team will record the bug for future correction.

4.4 Using a Non-MSTS Folder Structure

Open Rails uses a subset of the MSTS folder structure to run. You must create a root folder of any

suitable name and it must contain four folders, together with their related sub-folders:

 \GLOBAL

 \ROUTES

 \TRAINS

 \SOUND

No other files or folders are required in the root folder.

8

Within the \GLOBAL folder two sub-folders are required:

 \SHAPES

 \TEXTURES

Within the \TRAINS folder two subfolders are required:

 \CONSISTS

 \TRAINSETS

4.5 Original MSTS Files Usually Needed for Added MSTS-Compatible Content

4.5.1 Original MSTS Files Usually Needed for a Non-MSTS-Folder Structure

A number of MSTS folders and files must be placed into any OR-Specific installation you have

created. These may be obtained from your own MSTS Installation or, as noted below, from Train

Sim Forums

4.5.1.1 \GLOBAL

Within the \GLOBAL folder only the file tsection.dat is required. The most current version is best

and it can be downloaded from many Train Sim forums. Files sigcfg.dat and sigscr.dat are

needed if there are routes that don't have their own specific files with the same names in their root

folder.

4.5.1.2 \GLOBAL\SHAPES

Many routes use specific track sets, like XTRACK, UK-finescale etc.

Routes which solely use such sets do not need any of the original MSTS files from GLOBAL, as all

required files come from the relevant track set. These sets canbe downloaded from many Train

Sim forums. There are also many routes using super-sets of the original MSTS track sets. These

routes will need some or all the files contained in the SHAPES and TEXTURES subfolders within

the GLOBAL folder of your MSTS Installation.

4.5.1.3 \TRAINS

Requirements are similar to routes. Again, only the folders for the trainsets which are actually used

are required, but many third-party trainsets refer to original MSTS files like cabviews and, in

particular, sound files. Many consists refer to engines or wagons from the original MSTS routes

but those can be easily replaced with other engines or wagons.

4.5.1.4 \SOUND

Only very few routes provide a full new sound set, so the original files included in this folder are

usually needed.

4.5.1.5 \ROUTES

Once all the above directories are populated with files you need only the specific route folder

placed into \Routes to run Open Rails from a non-MSTS directory.

Note that many routes - in particular freeware routes - use content from the original MSTS routes,

and therefore when installing new routes you may find their installation requires files from the

original MSTS routes in order to be properly installed.

9

5 Getting Started
After having successfully installed Open Rails (see the Installation Manual), to run the game you

must double-click on the Open Rails icon on the desktop, or on the OpenRails.exe file.

The OpenRails main window will appear. This displays your available MSTS installation profiles.

5.1 Installation Profiles

In the simplest case, where you have only a basic MSTS installation (see paragraph “Does Open

Rails need MSTS to run?” for a precise definition of a MSTS installation) OR should already

correctly point to that. Installation. To check this, you should initially see under “Installation Profile”

the string “ – Default –”.Under “Route” you should see the name of one of the MSTS routes in your

MSTS installation.

You can easily add, remove or move other MSTS installations and select among them (e.g. if you

have any so-called “mini-routes” installed.). Click on the “Options” button and select the “Content”

tab. See the “Content Options” discussed below for more instructions.

5.2 Updating OR

When a new release of OR is available and your computer is online, a link “Update to xnnnn”

appears in the upper right corner. The string “xnnnn” is the release number of the newest release

that matches your selected level of update. Various level of updates called Update Channels are

available. You may choose the desired level in the “Options-Update” window, described below.

When you click on the update link OR will download and install the new release. In this way your

10

version of Open Rails is always up to date. Note, however, that previously saved games may not

be compatible with newer versions, as described here.

Clicking the link “What's new?” in the upper centre part of the main menu window will connect to a

website that summarizes the most recent changes to the OR program.

5.3 Further General Buttons

5.3.1 Tools

By clicking this button you get access to the ancillary tools (see here).

5.3.2 Documents

This button becomes selectable only if you have at least once updated to a testing version or to a

stable version greater than 1.0. By clicking this button you get immediate access to the OR

documentation.

5.4 Preliminary Selections

Firstly, under “Route:” select the route on which you wish to run.

If you check the “Logging” checkbox, Open Rails will generate a log file named OpenRailsLog.txt

that resides on your desktop. This log file is very useful to document and investigate malfunctions.

At every restart of the game (that is, after clicking “Start” or “Server” or “Client”) the log file is

cleared and a new one is generated.

If the “Windowed” checkbox is checked, Open Rails will run in a window instead of full screen.

If you wish to fine-tune Open Rails for your system, click on the “Options” button. See the Chapter:

“Open Rails Options” which describes the extensive set of OR options. It is recommended that you

read this chapter.

5.5 Gaming Modes

One of the plus points of Open Rails is the variety of gaming modes you can select.

5.5.1 Traditional “Activity” and “Explore mode” modes

As a default you will find the radio button “Activity” selected in the start window, as above.

This will allow you to run an activity or run in explore mode.

If you select “-Explore Route-” (first entry under “Activity:”), you will also have to select the consist,

the path, the starting time, the season and the weather with the relevant buttons.

To select the consist you have two possibilities: either you click under “Consist:”, and the whole list

of available consists will appear, or you first click under “Locomotive:”, where you can select the

desired locomotive, and then click under “Consist:”, where only the consists led by that locomotive

will appear.

If you instead select a specific activity, you won't have to perform any further selections.

If you have selected the related Experimental Option, at runtime you can switch Autopilot mode on

or off, which allows you to watch OR driving your train, as if you were a trainspotter or a visitor in

the cab.

11

5.5.2 Timetable Mode

If you select the radio button “Timetable”, the main menu window will change as follows:

Timetable mode is unique to Open Rails, and is based on a “timetable” that is created in a

spreadsheet formatted in a predefined way, defining trains and their timetables, their paths, their

consists, some operations to be done at the end of the train run, and some train synchronization

rules.

Timetable mode significantly reduces development time with respect to activities in cases where

no specific shunting or train operation is foreseen. The complete description of the timetable mode

can be found here.

The spreadsheet has a .csv format, but it must be saved in Unicode format with the extension

“.timetable_or” in a subdirectory named “Openrails” that must be created in the route's

ACTIVITIES directory.

For the game player, one of the most interesting features of timetable mode is that any one of the

trains defined in the timetable can be selected as the player train.

The drop-down window “Timetable set:” allows you to select a timetable file from among those

found in the route’s “Activities/Openrails/” folder.

Now you can select in the drop-down window “Train:” from all of the trains of the timetable the train

you desire to run as the Player train. Season and weather can also be selected.

12

5.5.3 Run!

Now, click on “Start”, and OR will start loading the data needed for your game. When loading

completes you will be within the cab of your locomotive! You can read further in the chapter

“Driving a Train”.

5.5.4 Multiplayer Mode

Open Rails also features this exciting game mode: several players, each one on a different

computer in a local network or through the Internet, can play together, each driving a train and

seeing the trains of the other players, even interacting with them by exchanging wagons, under the

supervision of a player that acts as dispatcher. The multiplayer mode is described in detail here.

5.5.5 Replay

This is not a real gaming mode, but it is nevertheless another way to experience OR. After having

run a game you can save it and replay it: OR will save all the commands that you gave, and will

automatically execute the commands during replay: it's like you are seeing a video on how you

played the game. Replay is described later together with the save and resume functions.

13

6 Open Rails Options
Clicking on the “Options” button opens a multi-panel window. The Menu > Options panels contain

the settings which remain in effect during your simulation. Most of the options are self-explanatory;

you may set them according to your preference and system configuration. For example, you can

turn off dynamic shadowing if your system has low FPS (frames-per-second) capability. The

options configuration that you select is saved when you click “OK”. When you restart OR, it will

use the last options configuration that you selected.

There are 10 option panels, described below.

6.1 General Options

6.1.1 Alerter in Cab

As in real life, when this option is selected, the player driving the train is required to perform

specific actions to demonstrate that he is “alive”, i.e. press the Alerter Button (or press the Key Z).

As the player may sometimes use a view other than the cabview to follow the train, and therefore

will not see the alerter warning, selecting the related option “Also in external views” enables the

alerter in those views as well.

14

6.1.2 Dispatcher window

It is suggested to always select this option. When this option is selected, pressing Ctrl+9 at

runtime creates an additional window like the following. This window coexists with the main Open

Rails window, and Alt+Tab switches between it and the Open Rails window. See the related option

“Fast full screen Alt+Tab”.

Through this window you can monitor train movements and also influence them, by setting signals

and switches. A complete description of the dispatcher window can be found here.

6.1.3 Graduated release air brakes

Selecting this option allows a partial release of the brakes. Generally speaking, operating with the

option checked is equivalent to passenger standard and unchecked is equivalent to freight

standard. A complete description of this option can be found here .

6.1.4 Large address aware binaries

It is suggested to leave this option checked. When it is unchecked, Open Rails can use a

maximum of 2 GB of RAM. When it is checked, the maximum is 4 GB for 64-bit Windows systems,

and 2 or 3 GB for 32-bit Windows systems. To increase the maximum RAM used by OR in 32-bit

Windows systems from 2 to 3 GB see the information found here:

15

http://knowledge.autodesk.com/support/autocad/troubleshooting/caas/sfdcarticles/sfdcarticles/How

-to-enable-a-3GB-switch-on-Windows-Vista-Windows-7-or-Windows-XP-s.html .

Take note that the RAM increase from 2 to 3 GB in 32-bit systems can slow down computer

operation when not using OR.

6.1.5 Control confirmations

Following MSTS practice, whenever you make adjustments to the train controls (e.g. open the

throttle) OR briefly shows a message near the bottom of the screen.

This is helpful for operations that don't have visible feedback and also allows you to control the

train without being in the cab.

Uncheck this option if you prefer to monitor your cab instruments and don't want to see these

messages.

OR uses the same message scheme for system messages such as "Game saved" or "Replay

ended" but you cannot suppress these system messages.

6.1.6 Retainer valve on all cars

The player can change the braking capability of all of the cars in the simulation to include Brake

Retainers. These cause the brake cylinder on a car to retain some fixed pressure when the train

brakes are released; this causes the car to produce a constant braking force. If this option is not

checked, then brake retainers are only found on cars that have an appropriate entry, as described

here, in their .wag files.

http://knowledge.autodesk.com/support/autocad/troubleshooting/caas/sfdcarticles/sfdcarticles/How-to-enable-a-3GB-switch-on-Windows-Vista-Windows-7-or-Windows-XP-s.html
http://knowledge.autodesk.com/support/autocad/troubleshooting/caas/sfdcarticles/sfdcarticles/How-to-enable-a-3GB-switch-on-Windows-Vista-Windows-7-or-Windows-XP-s.html

16

6.1.7 Brake pipe charging rate

The Brake Pipe Charging Rate (PSI/Second) value controls the charging rate of the main air

brake pipe. Increasing the value will reduce the time required to recharge the train (i.e. when

releasing the brakes after a brake application), while decreasing the value will slow the charging

rate. See also the paragraphs on the OR implementation of the braking system.

If this parameter is set at 1000, a simplified, MSTS-like braking model is implemented, providing

for faster brake release and being less influenced by incoherent braking parameters within .eng

file.

6.1.8 Language

OR is an internationalized package. It supports many languages, and others can be added by

following the instructions contained in the “Localization Manual” which can be found in the Open

Rails Source/Trunk/Documentation folder.

When “System” is selected, OR automatically selects the language of the hosting Windows, if the

language is available.

6.1.9 Pressure unit

The player can select the unit of measure of brake pressure in the HUD display (see here for HUD

information).

When set to “automatic” the unit of measure is the same as that used in the cabview of the

locomotive.

6.1.10 Other units

This selects the units displayed for length, mass, pressure, etc. in the F5 HUD of the simulation.

The option “Player’s Location” sets the units according to the Windows “Language and Region”

settings on the player’s computer.

The option “Route” set the units based on the data in the route files. The other options are self-

explanatory.

The F5 HUD uses the abbreviations “stn” for short tons (2000 lb.) and “t” or “tn” for metric tons

(tonnes).

Note that the units displayed by the F4 Track Monitor (e.g. velocity and distance) are always

based on data read from the route files.

6.1.11 Disable TCS scripts

This option disables the train control system scripts for locomotives where these have been

implemented.

17

6.2 Audio Options

Except for very slow computers, it is suggested that you leave the “MSTS Bin compatible sound”

option checked and set the Sound detail level to 5.

The “% sound volume” scroll button allows adjustment of the volume of OR sound.

18

6.3 Video Options

6.3.1 Dynamic shadows

With this option it is possible to enable or disable the display of dynamic shadows. Disabling can

be helpful if low frame rates are experienced.

6.3.2 Fast full-screen alt+tab

When this option is selected, and OR is running full-screen, pressing Alt+Tab leaves OR full-

screen and running, and allows the Dispatcher Window to be shown in front of it. If this option is

not selected, OR is minimized. The Dispatcher Window option must also be selected and the

Dispatcher Window started with Ctrl+9 to display the Dispatcher Window. Each successive press

of Alt+Tab will toggle between the Dispatcher window and the OR window

6.3.3 Glass on in-game windows

When this option is checked, the in-game windows are displayed in a semitransparent mode.

6.3.4 Model instancing

When the option is checked, in cases where multiple instances of the same object have to be

drawn, only a single draw call is sent to the GPU. This means lower CPU load. It is suggested to

always check this option.

19

6.3.5 Overhead wire

This option will enable or disable display of the overhead wire.

6.3.6 Vertical sync

When this option is selected, the OR update rate cannot be higher than the monitor vertical sync

frequency (typically 60 Hz). This reduces CPU energy consumption in fast PCs.

6.3.7 % Cab 2D Stretch

OR manages not only cab interiors using 2D images in a MSTS-compatible way, but also supports

3D models. Most 2D cab images follow MSTS practice, being 1024 x 768 pixels to suit monitors

with a 4:3 aspect ratio.

So, the problem arises - how to display these 4:3 cabs on a 16:9 or 16:10 monitor?

One possibility is to stretch these images horizontally to match other aspect ratios, as shown in the

image below.

To respect the proportions however, by default OR does no stretching and shows the full width of

the cab interior, thus losing a portion from the top and bottom of the image. You can use the Up

and Down Arrow keys to pan and reveal these missing portions.

Therefore the setting for % Cab 2D Stretch has a default value of 0 providing no stretching and a

maximum value of 100 which stretches the picture so as to cover the complete display.

Intermediate values provide a blend of panning and stretching.

20

21

6.3.8 Viewing distance

This option defines the maximum distance at which terrain is displayed. At higher distances

Distant Mountains will be displayed (see below). This parameter increases CPU and GPU load.

Also, some routes are optimized for the standard MSTS maximum viewing distance (2000m).

6.3.9 Distant Mountains

Distant mountains are supported in a way that is compatible with MSTS. Distant mountains are

present in the route if it has a folder called LO_TILE. You may turn the feature on by checking the

“Distant Mountains” checkbox. In addition to MSTS capability, you can select the viewing distance

of the distant mountains.

6.3.10 Viewing vertical FOV

This value defines the vertical angle of the world that is shown. Higher values correspond roughly

to a zoom out effect. The default is 45 degrees.

6.3.11 World object density

This value can be set from 0 to 10; when 10 is selected, all objects defined in the route files are

displayed. Lower values do not display some categories of objects.

6.3.12 Window size

This pair of values defines the size of the OR window. There are some preconfigured pairs of

values, however you may also manually enter a different size to be used.

6.3.13 Ambient daylight brightness

With this slider you can set the daylight brightness.

22

6.4 Simulation Options

The majority of these options define train physics behavior.

6.4.1 Advanced adhesion model

OR supports two adhesion models: the basic one is similar to the one used by MSTS, while the

advanced one is based on a model more similar to reality.

For more information read the section on “Adhesion Models” later in this manual.

6.4.2 Adhesion moving average filter size

The computations related to adhesion are passed through a moving average filter. Higher values

cause smoother operation, but also less responsiveness. 10 is the default filter size.

6.4.3 Break couplers

When this option is selected, if the force on a coupler is higher than the threshold set in the .eng

file, the coupler breaks and the train is divided into two parts. OR will display a message to report

this.

23

6.4.4 Curve dependent resistance

When this option is selected, resistance to train motion is influenced by the radius of the curve on

which the train is running. This option is described in detail here (theory) and also here (OR

application).

6.4.5 Curve dependent speed limit

When this option is selected, OR computes whether the train is running too fast on curves, and if

so, a warning message is logged and displayed on the monitor. Excessive speed may lead to

overturn of cars, this is also displayed as a message. This option is described in detail here

(theory) and also here (OR application). OR does not display the damage.

6.4.6 Tunnel dependent resistance

When this option is selected, OR takes into account the fact that trains in tunnels are subject to

higher air resistance, and therefore need a higher effort at invariant speed. This option is

described in detail here (theory) and here (OR application).

6.4.7 Override non-electrified route line-voltage

This option allows running (in a non-prototypical way) electric locomotives on non-electrified

routes.

6.4.8 Steam locomotive hot start

This option allows starting the game with the boiler water temperature already at a value that

allows running the locomotive. If the option is not selected, you will have to wait until the water

temperature reaches a high enough value.

24

6.5 Keyboard Options

In this panel you will find listed the keyboard keys that are associated with all OR commands.

You can modify them by clicking on a field and pressing the new desired key. Three symbols will

appear at the right of the field: with the first one you validate the change, with the second one you

cancel it, with the third one you return to the default value.

By clicking on “Check” OR verifies that the changes made are compatible, that is, that there is no

key that is used for more than one command.

By clicking on “Defaults” all changes that were made are reset, and the default values are

reloaded.

By clicking on “Export” a printable text file “Open Rails Keyboard.txt” is generated on the desktop,

showing all links between commands and keys.

25

6.6 Data Logger Options

By selecting the option “Start logging with the simulation start” or by pressing F12 a file with the

name dump.csv is generated in the configured Open Rails logging folder (placed on the Desktop

by default). This file can be used for later analysis.

26

6.7 Evaluation Options

When data logging is started (see preceding paragraph), data selected in this panel are logged,

allowing a later evaluation on how the activity was executed by the player.

27

6.8 Content Options

This window allows you to add, remove or modify access to additional MSTS installations or

miniroute installations for Open Rails. Installations located on other drives, or on a USB key, can

be added even if they are not always available.

Click on the “Add” button, and locate the desired installation. OR will automatically enter a

proposed name in the “Name:” window that will appear in the “Installation set:” window on the

main menu form. Modify the name if desired, then Click “OK” to add the new path and name to

Open Rails.

To remove an entry (note that this does not remove the installation itself!) select the entry in the

window, and click “Delete”, then “OK” to close the window. To modify an entry, use the “Browse…”

button to access the location; make the necessary changes, and then “Save” the changes.

28

6.9 Updater Options

These options control which OR version update channel is active (see also here). The various

options available are self-explanatory.

29

6.10 Experimental Options

Some experimental features being introduced in Open Rails may be turned on and off through the

“Experimental” tab of the Options window, as described below:

6.10.1 Super-elevation

If the value set for “Level” is greater than zero, OR supports super elevation for long curved tracks.

The value “Minimum Length” determines the length of the shortest curve to have super-elevation.

You need to choose the correct gauge for your route, otherwise some tracks may not be properly

shown.

When super-elevation is selected, two viewing effects occur at runtime:

1. If an external camera view is selected, the tracks and the running train will be shown inclined

towards the internal part of the curve.

2. When the cab view is selected, the external world will be shown as inclined towards the

external part of the curve.

30

OR implements super elevated tracks using Dynamic Tracks. You can change the appearance of

tracks by creating a TrProfile.sft in the TrackProfiles folder of your route. The document “How to

Provide Track Profiles for Open Rails Dynamic Track.docm” describing the creation of track

profiles can be found in the OpenRails /Trunk/Source/Documentation folder. Forum discussions

about track profiles can also be found here:

 http://www.elvastower.com/forums/index.php?/topic/21119-

superelevation/page__view__findpost__p__115247.

http://www.elvastower.com/forums/index.php?/topic/21119-superelevation/page__view__findpost__p__115247
http://www.elvastower.com/forums/index.php?/topic/21119-superelevation/page__view__findpost__p__115247

31

6.10.2 Automatically tune settings to keep performance level

When this option is selected OR attempts to maintain the selected Target frame rate FPS

(Frames per second). To do this it decreases or increases the viewing distance of the standard

terrain. If the option is selected, also select the desired FPS in the “Target frame rate” window.

6.10.3 Double overhead wires

MSTS uses a single wire for electrified routes; you may check this box so that OR will show the

two overhead wires that are more common.

6.10.4 Show shape warnings

When this option is selected, when OR is loading the shape (.s) files it will report errors in syntax

and structure (even if these don't cause runtime errors) in the Log file “OpenRailsLogFile.txt” on

the desktop.

6.10.5 Forced red at station stops

In case a signal is present beyond a station platform and in the same track section (no switches in

between), OR will set the signal to red until the train has stopped and then hold it as red from that

time up to two minutes before starting time. This is useful in organizing train meets and takeovers,

however it does not always correspond to reality nor to MSTS operation. So with this option the

player can decide which behavior the start signal will have. This option is checked by default.

Unchecking the option has an effect on simulation behavior only if no Timetable mode operation is

under way.

6.10.6 Load night textures only when needed

As a default OR loads night textures together with the day textures at daytime. When this option is

selected, to reduce loading time and reduce memory used, night textures are not loaded in the

daytime and are only loaded at sunset (if the game continues through sunset time).

6.10.7 Signal light glow

 When this option is set, a glowing effect is added to signal semaphores when seen at distance, so

that they are visible at a greater distance. There are routes where this effect has already been

natively introduced; for these, this option is not recommended.

6.10.8 Extended AI train shunting

When this option is selected, further AI train shunting functions are available. This allows for more

interesting and varied activities. If an activity is run which makes use of these function, this option

must be selected. This option has no effect in Timetable mode.

The following additional shunting functions are available:

 AI train couples to static consist and restarts with it.

 AI train couples to player or AI train and becomes part of it; coupled AI train continues

on its path.

 AI train couples to player or AI train and leaves to it its cars; coupled and coupling train

continue on their path.

 AI train couples to player or AI train and “steals” its cars; coupled and coupling train

continue on their path.

 AI train uncouples any number of its cars; the uncoupled part becomes a static consist.

With the same function it is possible to couple any number of cars from a static consist.

32

for content developers: A more detailed description of this feature can be found under Extended AI

Train Shunting under Open Rails Train Operation.

for content developers: Selecting this option also enables the waiting points to declare an absolute

time-of-day instead of a waiting point duration. A more detailed description of this feature can be

found in the related paragraph in the chapter “Open Rails Train Operation”.

6.10.9 Autopilot

With this option enabled and when in activity mode, it is possible to stay in the cab of the player

train, but to let Open Rails move the train, respecting path, signals, speeds and station stops.

It is possible to switch the player train between autopilot mode and player driven mode at run time.

The Autopilot mode is described here.

6.10.10 ETCS circular speed gauge

When this option is selected, it is possible to add to the cabview a circular speed gauge

accordingly to the European standard train control system ETCS.

For content developers: The gauge is added by the insertion of a block like the following into the .cvf

file:
Digital (

Type (SPEEDOMETER DIGITAL)

Style (NEEDLE)

Position (160 255 56 56)

ScaleRange (0 250)

Units (KM_PER_HOUR)

)

6.10.11 Extend object maximum viewing distance to horizon

With this option selected, all objects viewable up to the viewing distance defined in the Video

Options are displayed. As a default ORTS only displays objects up to 2000 m. distance. Selecting

this option improves display quality but may reduce frame rate.

6.10.12 Load DDS textures in preference to ACE

Open Rails is capable of loading both ACE and DDS textures. If only one of the two is present, it is

loaded. If both are present, the ACE texture is loaded unless this option has been selected.

33

6.10.13 Location-linked passing path processing

When this option is NOT selected, ORTS acts similarly to MSTS. That is, if two trains meet whose

paths share some track section in a station, but are both provided with passing paths as defined

with the MSTS Activity Editor, one of them will run through the passing path, therefore allowing the

meet. Passing paths in this case are only available to the trains whose path has passing paths.

When this option is selected, ORTS makes available to all trains the main and the passing path of

the player train. Moreover, it takes into account the train length in selecting which path to assign to

a train in case of a meet.

for content developers: A more detailed description of this feature can be found under Location-

Linked Passing Path Processing in the chapter “Open Rails Train Operation”.

6.10.14 MSTS Environments

By default ORTS uses its own environment files and algorithms, e.g. for night sky and for clouds.

With this option selected, ORTS applies the MSTS environment files. This includes support of

Kosmos environments, even if the final effect may be different from the current MSTS one.

6.10.15 Adhesion factor correction

The adhesion is multiplied by this percentage factor. Therefore lower values of the slider reduce

adhesion and cause more frequent wheel slips and therefore a more difficult, but more challenging

driving experience.

6.10.16 Level of detail bias

This option is an expansion (and replacement) of an earlier experimental option: "Always use

highest level of detail". The new option allows you to increase or reduce the level of detail

generally shown independently of the viewing distance and world object density.

6.10.17 Adhesion proportional to rain/snow/fog

When this option is selected, adhesion becomes dependent on the intensity of rain and snow and

the density of fog. Intensities and density can be modified at runtime by the player.

6.10.18 Adhesion factor random change

This factor randomizes the adhesion factor corrector by the entered percentage. The higher the

value, the higher the adhesion variations.

6.10.19 Precipitation Box Size

Open Rails will simulate precipitation – i.e. rain or snow, as falling individual particles. This

represents a significant computing and display system load, especially for systems with limited

resources. Therefore, the region in which the precipitation particles are visible, the “Precipitation

Box”, is limited in size and moves with the camera. The size of the box can be set by the entries in

the height, width and length boxes. The X and Z values are centered on the camera location, and

falling particles “spawn” and fall from the top of the box.

6.10.20 Correct questionable braking parameters

When this option is selected, Open Rails corrects some braking parameters if they are out of a

reasonable range or if they are incoherent. This is due to the fact that many existing .eng files

have such issues, that are not a problem for MSTS, which has a much simpler braking model, but

that are a problem for OR, which has a more sophisticated braking model. The problem usually is

that the train brakes require a long time to release, and in some times do not release at all.

34

The following checks and corrections are performed if the option is checked (only for single-pipe

brake system):

 if the compressor restart pressure is smaller or very near to the max system pressure,

the compressor restart pressure and if necessary the max main reservoir pressure are

increased;

 if the main reservoir volume is smaller than 0.3 cubic meters and the engine mass is

higher than 20 tons, the reservoir volume is raised to 0.78 cubic meters;

 the charging rate of the reservoir is derived from the .eng parameter

“AirBrakesAirCompressorPowerRating” (if this generates a value greater than 0.5

PSI/sec) instead of using a default value.

35

7 Driving a Train

7.1 Game Loading

Once you have pressed “Start”, Open Rails loads and processes all the data needed to run the

game. During this phase, the route’s splash screen is shown. If the same session was loaded

previously, a bar showing loading progress is shown at the bottom of the display. During loading, if

logging is selected, the log file OpenRailsLog.txt will already begin storing data.

7.2 Entering the Simulation

At the end of the loading phase, you are in the cab of the train you will drive.(Note: some newer

locomotives have experimental 3D cabs - if no cab interior display appears, then type Alt+1 to

display the cab interior.) Depending on the configuration of the activity (in case of activity mode),

your train will be in motion or stopped. In this second case, if the train is driven by an electric

locomotive, as the first operation you have to raise the pantograph (key P). To look around in the

simulation, you can select different views using the keyboard, as described in “Changing the View”

below.

7.3 Open Rails Driving Controls

Open Rails follows MSTS very closely, providing controls to drive steam, electric and diesel

locomotives, both on their own or working together, but also offers additional capabilities.

A very wide range of systems and instruments specified in the ENG and CVF files is supported.

To control the train, you have at your disposal a set of keyboard commands that is equivalent to

those of MSTS, plus some new ones. You can get a printable version of the command set as

described in paragraph 6.5 (Keyboard options), or you can press F1 to immediately get the

scrollable F1 Information Window as shown and described below.

Alternatively, you can operate the cabview controls by mouse click (buttons) and mouse drag

(levers and rotary switches).

7.3.1 Throttle Control

Steam locomotives have a continuous throttle or regulator, but many diesel and electric

locomotives have a notched throttle which moves only in steps. To avoid jerks, some of these

steps may be "smooth", where the power is gradually and automatically adjusted to achieve the

setting.

7.3.2 Dynamic Braking

Dynamic braking is the use of the traction motors of a locomotive (electric or diesel-electric) as

generators to slow the train. Initially, dynamic braking was applied in mountainous territory where

conventional freight-car brakes were prone to overheating on long downgrades. It was also limited

to speeds above 10mph. Dynamic braking controls are usually notched.

In OR, the dynamic brake (controlled by the keys , and .) is not available unless the throttle is

fully closed; similarly the throttle is not available unless the dynamic brake is fully released (off).

As defined in the CVF file, the tractive and braking forces may be shown on two different

instruments, on one instrument with two needles or on a single instrument where the braking is

shown as a negative value.

36

7.3.3 Combined Control

Some locomotives are fitted with a "combined control" where a single lever is used to provide

throttle and brake control together, with negative throttle positions used to apply the brake. The

brake element may be either dynamic or conventional train brakes.

There may be a delay changing between throttle and brake operation, representing the time

required to change the operation of the traction motors from motors to generators.

7.3.1 Blended Dynamic Brake

Some locomotives have blended dynamic brake, which means that the trainbrake lever also

controls the dynamic brake. Currently this is implemented to be MSTS compatible, the dynamic

brake force percentage follows the train brake pipe pressure (full service/suppression will set

100% dynamic brake). The blending percentage run up/ run down follows the airbrake

application(“MaxApplicationRate”), and release rates(“MaxReleaseRate”), and also respects the

dynamic brake delay setting (“DynamicBrakesDelayTimeBeforeEngaging”) .eng parameters.

Blending can also work if there is no dynamic brake lever configured for the locomotive. If there is

dynamic brake lever defined, then the higher command will be applied, except if

"OrtsDynamicBlendingOverride (1)” is added to the Engine () block, which makes the lever

override the blending command, if the dynamic brake lever is not at full release position.

“OrtsDynamicBlendingForceMatch (1)” parameter can be added to Engine () block, which

makes the dynamic brake system to try to achieve the same brake force as the airbrake would

have (even if the airbrake is bailed off), in the current train brake lever position. Example: if the

trainbrake has 22 kN brake force at 40% trainbrake setting, then the dynamic brake will try to

achieve, and maintain 22kN braking force, instead of just setting 40% dynamic brake percentage.

7.3.2 Refill

Diesel and steam locomotives must refill their supplies of fuel occasionally, perhaps daily, but

steam locomotives need water more frequently and have a range of little more than 100 miles.

Use the "T" key to refill with fuel or water at a fuel or water supply location. Use the “Y” key to pick

up water from a water trough under a moving locomotive.

If the locomotive or tender is alongside the pickup point, e.g. a water tank, then the refilling takes

place as the key is held down. If the locomotive is further away, then the distance to the nearest

pickup is shown instead.

Note also that the key Shift+T will provide immediate refill at any time.

7.3.3 Specific Features to Optimize Locomotive Driving

You are encouraged to read the chapter on Open Rails Physics to optimize your driving

capabilities and to achieve a realistic feeling of what happens in a real moving train.

7.3.4 Examples of Driving Controls

 for content developers:

For continuous throttle, see MSTS model ...\TRAINS\TRAINSET\ACELA\acela.eng

For a notched non-smooth throttle, see ...\TRAINS\TRAINSET\GP38\gp38.eng

For a combined throttle and dynamic brake, see ...\TRAINS\TRAINSET\DASH9\dash9.eng

For a combined throttle and train brake, see

37

...\MSTS\TRAINS\TRAINSET\SERIES7000\series7000.eng

7.4 Driving aids

Open Rails provides a large number of driving aids, which support the player during train

operation.

7.4.1 Basic Head Up Display (HUD)

By pressing F5 you get some important data displayed at the top left of the display in the so-called

Head Up Display (HUD). If you want the HUD to disappear, press F5 again.

The HUD has 6 different pages. The basic page is shown at game start. To sequentially switch to

the other pages press Shift+F5. After having cycled through all of the extended HUD pages, the

basic page is displayed again.

To hide or redisplay the current extended HUD data while continuing to show the basic HUD,

press Alt+F5.

The basic page shows fundamental information. The other pages go into more detail, and are

used mainly for debugging or to get deeper information on how OR behaves. They are listed in the

“Analysis tools” subchapter.

The following information is displayed in the basic display:

 Version = The version of the Open Rails software you are running

 Time = Game time of the Activity

 Speed = the speed in Miles/Hr. or Kilometers/Hr.

 Gradient = Route gradient in % in that point

 Direction = Position of the Reverser - Electric, Diesel and Steam.

 Throttle = Displays the current position of the throttle, expressed as a percentage of full

throttle. Throttle correctly uses Notches and configured % of power for Diesel engines or

% of throttle for steam engines.

 Train Brake = Shows the current position of the train brake system and the pressure

value of the train brakes. Braking correctly reflects the braking system used;

hold/release, self- lapping or graduated release. The Train brake HUD line has two

Brake Reservoir pressure numbers: the first is the Equalization Reservoir (EQ) and the

second is the Brake Cylinder (BC) pressure. The two BP numbers report the brake

pressure in the lead engine and in the last car of the train. The unit of measure used for

brake pressure is defined by the option “Pressure unit”.

 Engine Brake = percentage of independent engine brake. Not fully releasing the engine

brake will affect train brake pressures.

 Dynamic brake = if engaged, shows % of dynamic brake

 Engine = shows the running status of the engine.

In case of a gear-based engine, after the “Engine” line a “Gear” line appears displaying

the actual gear. N means no gear inserted.

 FPS = Number of Frames rendered per second

If the Autopilot is active, an additional line will be shown.

38

An example of the basic HUD for Diesel locomotives:

7.4.2 Electric Locomotives – Additional information

For electric locomotives information about the pantograph state is also shown and whether the

locomotive has power (at least one pantograph raised) or not.

7.4.3 Steam Engine – Additional Information

When using a steam engine the following additional information is displayed in the HUD:

 Steam Usage in lbs. /h, based on entirely new physics code developed by the Open

Rails team. It is calculated by parsing the .eng file for the following parameters: number

of cylinders; cylinder stroke; cylinder diameter; boiler volume; maximum boiler pressure;

maximum boiler output; exhaust limit; and basic steam usage.

 Boiler pressure.

 Water level.

 Levels of coal and water in %.

An example of the basic HUD for Steam

locomotives:

39

The default firing setting is automatic fireman. If manual firing is engaged (with Ctlr+F), then

additional information is included:

7.4.4 Multiplayer – Additional Information

If a multiplayer session is active, the following additional information is shown: the actual status of

the player (dispatcher, helper or client), the number of players connected and the list of trains with

their distances from the train of the player viewing the computer.

7.4.5 Compass Window

Open Rails software displays a compass that provides

a heading based on the camera’s direction together

with its latitude and longitude.

To activate the compass window press the 0 (zero)

key. To deactivate the compass window, press the 0

(zero) key a second time.

7.4.6 F1 Information Monitor

The F1 key displays the following set of panels in a tabbed format, selected by clicking with the

mouse on the desired heading:

40

“Key Commands”: displays the actions of the keyboard keys

“Briefing”: displays what the activity creator has entered as information to be provided to the

player about the activity:

“Timetable”: shows the list of the station stops, if any, with scheduled and actual times of

arrival and departure. During the activity the actual performance will be shown on the F10

Activity Monitor.

41

“Work Orders”: if defined by the activity creator, lists the coupling and uncoupling operations

to be performed. When an operation has been completed, the string “Done” appears in the

last column:

“Procedures”: basic instructions for driving trains in Open Rails.

7.4.7 F4 Track Monitor

This window, which is displayed by pressing F4, has two different layouts according the the train’s

control mode: “Auto Signal” mode, “Manual” mode or “Explorer” mode (it is strongly suggested to

follow the link and read the related paragraph).

Auto Signal or Auto mode is the default mode when running activities or timetables.

There are however two main cases where you must switch to “Manual” mode by pressing Ctrl+M:

 when the activity requires shunting without a predefined path

 when the train runs out of control due to SPAD (“Signal Passed At Danger” or passing a

red signal) or exits the predefined path by error. If such situations occur you will usually

get an emergency stop. To reset the emergency stop and then move to correct the

error, you must first switch to Manual mode.

To switch to manual mode press Ctrl+M when the train is stopped.

You can return to auto mode by pressing Ctrl+M again when the head of the train is again on the

correct path, with no SPAD situation. In standard situations you can also return to auto mode while

the train is moving. Details are described in the paragraph of the link shown above.

42

Track Monitor display in Auto Signal mode:

Track Monitor display in Manual mode / Explorer mode:

43

Track Monitor: Displayed Symbols (common for Auto and Manual mode unless indicated

otherwise) :

Notes on the Track Monitor:

 Distance value is displayed for first object only, and only when within distance of the

first fixed marker.

Distance is not shown for next station stop.

 When no signal is within the normal display distance but a signal is found at a further

distance, the signal aspect is displayed in the advance signal area. The distance to this

signal is also shown.

This only applies to signals, not to speedposts.

 For Auto mode :

if the train is moving forward, the line separating the Backward information area is

shown in red, and no Backward information is shown.

If the train is moving backward, the separation line is shown in white, and Backward

information is shown if available.

 For Manual mode :

if the train is on its defined path (and toggling back to Auto control is possible), the own

train symbol is shown in white, otherwise it is shown in red.

 The colour of the track-lines is an indication of the train’s speed compared to the

maximum allowed speed :

 Dark green : low speed, well below allowed maximum

 Light green : optimal speed, just below maximum

 Orange : slight overspeed but within safety margin

 Dark red : serious overspeed, danger of derailment or crashing

Note that the placement of the display objects with respect to the distance offset is indicative only.

If multiple objects are placed at short intermediate distances, the offset in the display is increased

such that the texts do not overlap. As a result, only the first object is always shown at the correct

position, all other objects are as close to their position as allowed by other objects closer to the

train.

44

7.4.8 F6 Siding and Platform Names

Hit the F6 key to bring up the siding and platform names within a region. These can be crowded so

hitting Shift+F6 will cycle through showing platforms only, sidings only, and both.

Hitting F6 again removes both siding and platform names.

7.4.9 F7 Train Names

Hitting the F7 key displays train service names (player train always has “Player” as identification).

Hitting Shift+F7 displays the rolling stock IDs.

45

In a multiplayer session, player-controlled trains will have the id specified by the player:

7.4.10 F8 Switch Monitor

Use the Switch Monitor, enabled by the F8 key, to see the direction of the turnout directly in

front and behind the train.

There are 4 ways to change the direction:

 Click on the turnout icon in the Switch Monitor;

 Press the G key (or, for the turnout behind the train, the Shift+G key);

 Hold down the Alt key and use the left mouse button to click on the switch in the Main

Window;

 Use the dispatcher window, as described here.

Please note that with the last two methods you can throw any switch, not only the one in front but

also the one behind the train.

However, note also that not all switches can be thrown: in some cases the built-in AI dispatcher

holds the switch in a state to allow trains (especially AI trains) to follow their predefined path.

The arrow and eye symbols have the same meaning as in the track monitor. The switch is red

when it is reserved or occupied by the train, and green when it is free.

A switch shown in green can be operated, a switch shown in red is locked.

46

7.4.11 F9 Train Operations Monitor

The Open Rails Train Operations window is similar in function to the F9 window in MSTS, but

includes additional features to control the air brake connections of individual cars. For example, it is

possible to control the connection of the air brake hoses between individual cars, to uncouple cars

without losing the air pressure in the train’s air brake hose, or uncouple cars with their air brakes

released so that they will coast.

The unit which the player has selected as the unit from which to control the train, i.e. the lead unit,

is shown in red.

Cars are numbered according to their UiD in the Consist file (.con) or UiD in the Activity file (.act).

Scrolling is accomplished by clicking on the arrows at the left or right bottom corners of the

window.

Clicking on the coupler icon between any two cars uncouples the consist at that point.

You can also uncouple cars from your player train by pressing the U key and clicking with the

mouse on the couplers in the main window.

By clicking on any car in the above window, the Car Operation Menu appears. By clicking in this

menu it is possible:

 to apply and release the handbrake of the car;

 to power on or power off the car (if it is a locomotive). This applies for both electric and

diesel locomotives;

 to connect or disconnect locomotive operation with that of the player locomotive;

 to connect or disconnect the car’s air hoses from the rest of the consist;

 to toggle the angle cocks on the air hoses at either end of the car between open and

closed;

 to toggle the bleed valve on the car to vent the air pressure from the car’s reservoir and

release the air brakes to move the car without brakes (e.g. humping, etc.).

47

By toggling the angle cocks on individual cars it is possible to close selected angle cocks of the air

hoses so that when the cars are uncoupled, the air pressure in the remaining consist (and

optionally in the uncoupled consist) is maintained. The remaining consist will then not go into

“Emergency” state.

When working with cars in a switch yard, cars can be coupled, moved and uncoupled without

connecting them to the train’s air braking system (see the F5 HUD for Braking). Braking must then

be provided by the locomotive’s independent brakes. A car or group of cars can be uncoupled with

air brakes active so that they can be recoupled after a short time without recharging the entire

brake line (“Bottling the Air”). To do this, close the angle cocks on both ends of the car or group

before uncoupling. Cars uncoupled while the consist is moving, that have had their air pressure

reduced to zero before uncoupling, will coast freely.

In Open Rails, opening the bleed valve on a car or group of cars performs two functions: it vents

the air pressure from the brake system of the selected cars, and also bypasses the air system

around the cars if they are not at the end of the consist so that the rest of the consist remains

connected to the main system. In real systems the bypass action is performed by a separate valve

in each car. In the F5 HUD Braking display, the text “Bleed” appears on the car’s display line until

the air pressure has fallen to zero.

More information about manipulating the brakes during coupling and uncoupling can also be found

here.

7.4.12 F10 Activity Monitor

The Activity Monitor is similar in function to MSTS. It records the required “Arrival” time of your train

and the actual arrival time as well as the required “Depart” time and the actual departure time.

A text message alerts the engineer as to the proper departure time along with a whistle or other

departure sound.

7.4.13 Odometer

The odometer display appears in the centre of the main window, toggled on or off by the keys

Shift+Z. The direction of the count is toggled by the keys Shift+Ctrl+Z, and the odometer is reset

or initialized by Ctrl+Z.

When set for counting down, it initializes to the total length of the train. As the train moves, the

odometer counts down, reaching zero when the train has moved its length. When set for counting

up, it resets to zero, and measures the train’s total movement.

For example, if the odometer is set for counting down and you click Ctrl+Z as the front of the train

passes a location, then when it reaches zero you will know, without switching views, that the other

end of the train has just reached the same point, e.g. the entrance to a siding, etc.

48

7.5 Dispatcher Window

The dispatcher window is a very useful tool to monitor and control train operation. The Dispatcher

window option must be selected.

The dispatcher window is actually created by pressing Ctrl+9. The window is created in a

minimized state, so to display it in front of the OR window you must click on “Alt+Tab” and select

the dispatcher window icon, or click on one of the OR icons in the taskbar. If you are running OR

in full-screen mode, you must also have the “Fast full screen Alt+Tab” option selected to have both

the OR and the dispatcher windows displayed at the same time. After the dispatcher window has

been selected with Alt+Tab, successive Alt_Tabs will toggle between the OR window and the

dispatcher window.

The dispatcher window is resizable and can also be maximized, e.g. on a second display. You can

define the level of zoom either by changing the value within the “Res” box or by using the mouse

wheel. You can pan through the route by moving the mouse while pressing the left button. You

can hold the shift key while clicking the mouse in a place in the map; this will quickly zoom in with

that place in focus. You can hold Ctrl while clicking the mouse in a place in the map, which will

zoom out to show the whole route. Holding Alt and clicking will zoom out to show part of the route.

49

The dispatcher window shows the route layout and monitors the movement of all trains. While the

player train is identified by the “PLAYER” string (or by a “0” if autopilot mode is enabled), AI- trains

are identified by their OR number (that is also shown in the “Extended HUD for Dispatcher

Information”), followed by the service name. Static consists are identified as in MSTS.

The state of the signals is shown (only three states are drawn, that is

 Stop – drawn in red

 Clear_2 -drawn in green

 while all signals with restricting aspect are drawn in yellow.

The state of the switches is also shown. A switch shown with a black dot indicates the main route,

while a grey dot indicates a side route.

When the “Draw path” is checked, the first part of the path that the train will follow is drawn in red.

If a trailing switch in the path is not in the correct position for the path, a red X is shown on it.

When left- or right-clicking on a signal, a pop-up menu appears:

Using the mouse, you can force the signal to Stop, Approach

or Proceed. Later you can return it to System Controlled mode.

By left- or right-clicking on a switch, a small pop-up menu with the two selections “Main route” and

“Side route” appears. By clicking on them you can throw the switch, provided the OR AI dispatcher

allows it.

With respect to AI trains, as a general rule you can command their signals but not their switches,

because AI trains are not allowed to exit their path.

The two checkboxes “Pick Signals” and “Pick Switches” are checked as default. You can uncheck

one of them when a signal and a switch are superimposed in a way that it is difficult to select the

desired item.

You can click a switch (or signal) in the dispatcher window and press Ctrl+Alt+G to jump to that

switch with the free-roam (8-key) camera.

If you click on “View Self” the dispatcher window will center on the player train. However, if the

train moves, centering will be lost.

You can select a train by left-clicking with the mouse its green reproduction in the dispatcher

window, approximately half way between the train's head and its name string. The train body

becomes red. Then if you click on the button “See in game” the main Open Rails window will show

this train in the views for the 2, 3, 4 or 6 keys, (and the 5-key view if available for this train).

Display of the new train may require some time for OR to compute the new image if the train is far

away from the previous camera view.

Take into account that continuous switching from train to train, especially if the trains are far away,

can lead to memory overflows.

If after a train selection you click on “Follow” the dispatcher window will remain centered on that

train.

50

7.6 Additional Train Operation Commands

OR supports an interesting range of additional train operation commands. Some significant ones

are described here.

7.6.1 Diesel Power On/Off

With the key Shift+Y the player diesel engine is alternately powered on or off. At game start the

engine is powered on.

With the key Ctrl+Y the helper diesel locomotives are alternately powered on or off. At game start

the engines are powered on.

Note that by using the Car Operation Menu you can also power on or off the helper locomotives

individually.

7.6.2 Initialize Brakes

Entering this command fully releases the train brakes. Usually the train must be fully stopped for

this to be allowed. This action is usually not prototypical. Check the keyboard assignment for the

keys to be pressed. The command can be useful in three cases:

1. A good number of locomotives do not have correct values for some brake parameters in the

.eng file; MSTS ignores these; however OR uses all these parameters, and it may not allow the

brakes to release fully. Of course, it would be more advisable to correct these parameters.

2. It may happen that the player does not want to wait for the time needed to recharge the brakes;

however the use of the command in this case is not prototypical of course.

3. The player may wish to immediately connect brake lines and recharge brakes after a coupling

operation; again, the use of the command is not prototypical.

Note that this command does not work if the “Emergency Brake” button has been pressed – the

button must be pressed again to cancel the emergency brake condition.

7.6.3 Connect/Disconnect Brake Hoses

This command should be used after coupling or decoupling. As the code used depends on

keyboard layout, check the keys to be pressed as described in paragraph 6.5 or by pressing F1 at

runtime. More information on connecting brakes and manipulating the brake hose connections can

be found here and here.

7.6.4 Doors and Mirror Commands

Note that the standard keys in OR for these commands are different from those of MSTS.

7.6.5 Wheelslip Reset

With the keys Ctrl+X you get an immediate wheelslip reset.

7.6.6 Toggle Advanced Adhesion

Advanced adhesion can be enabled or disabled by pressing Ctrl+Alt+X.

7.6.7 Request to Clear Signal

When the player train has a red signal in front or behind it, it is sometimes necessary to ask for

authorization to pass the signal. This can be done by pressing Tab for a signal in front and

Shift+Tab for a signal behind. You will receive a voice message reporting if you received

authorization or not. On the Track monitor window the signal colours will change from red to

red/white if permission is granted.

51

7.6.8 Change Cab - Ctrl+E

All locomotives and some passenger cars have a forward-facing cab which is configured through

an entry in the ENG file. For example, the MSTS Dash9 file TRAINSET\DASH9\dash9.eng

contains the entry:

 CabView (dash9.cvf)

Where a vehicle has a cab at both ends, the ENG file may also contain an entry for a reversed

cab:

 CabView (dash9_rv.cvf)

OR will recognise the suffix _rv as a rear-facing cab and make it available as follows.

When double-heading, banking or driving multiple passenger units (DMUs and EMUs), your train

will contain more than one cab and OR allows you to move between cabs to drive the train from a

different position. If you change to a rear-facing cab, then you will be driving the train in the

opposite direction.

If there are many cabs in your train, pressing Ctrl+E moves you through all forward and rear-facing

cabs in order up to the last cab in the train. If you end up in a rear-facing cab, your new “forward”

direction will be your old “backward” direction. So you will now drive the train in the opposite

direction.

A safety interlock prevents you from changing cabs unless the train is stationary and the direction

lever is in neutral with the throttle closed.

7.6.9 Train Oscillation

You can have train cars oscillating (swaying) by hitting Ctrl+V; if you want more oscillation, click

Ctrl+V again. Four levels, including the no-oscillation level, are available by repeating Ctrl+V.

7.7 Autopilot Mode

Autopilot mode is not a simulation of a train running with cruise control; instead, it is primarily a

way to test activities more easily and quickly; but it can also be used to run an activity (or part of it,

as it is possible to turn autopilot mode on or off at runtime) as a trainspotter or a visitor within the

cab.

Autopilot mode is enabled with the related checkbox in the Experimental Options. It is active only

in activity mode (i.e. not in explorer or timetable modes).

When starting the game with any activity, you are in player driving mode. If you press Alt+A, you

enter the autopilot mode: you are in the loco's cabview with the train moving autonomously

accordingly to path and station stops and of course respecting speed limits and signals. You still

have control over the horn, bell, lights, doors, and some other controls that do not affect train

movement. The main levers are controlled by the autopilot mode, and indications are correct.

You can at any moment switch back to player driven mode by pressing Alt+A, and can again

switch to autopilot mode by again pressing Alt+A.

When in player driven mode you can also change cab or direction. However, if you return to

autopilot mode, you must be on the train's path; other cases are not managed. When in player

driven mode you can also switch to manual, but before returning to autopilot mode you must first

return to auto mode.

52

Station stops, waiting points and reverse points are synchronized as far as possible in the two

modes.

Cars can also be uncoupled in autopilot mode (but check that the train will stop in enough time,

otherwise it is better to change to player driven mode). A static consist can also be coupled in

autopilot mode.

The Request to Clear signal (Tab key) works in the sense that the signal opens. However in

autopilot mode at the moment that the train stops you must switch to player driven mode to pass

the signal and then you can return to autopilot mode.

Note that if you run with Advanced Adhesion enabled, you may have wheelslip when switching

from autopilot mode to player driven mode.

The jerky movements of the levers in autopilot mode are the result of the way that OR pilots the

train.

7.8 Changing the Train Driven by the Player

7.8.1 General

This function only works in activity mode, and allows the player to select another (existing) train

from a list and to start driving it. It requires that the Experimental Options “Autopilot” and

“Extended AI Shunting” be checked.

This function can be called more than once. A new information window has been created to

support this function: the “Train List” window (opened with Alt+F9). It contains a list of all of the AI

trains and of the static trains equipped with a locomotive with cab, plus the player train.

Here an example of an initial situation:

The current player train is shown in red. The star at the end

of the line indicates that the cameras (cab camera is

managed differently) are currently linked to that train.

AI trains whose loco(s) have at least a cab are shown in

green. They are eligible for player train switching.

Static trains with loco and cab are shown in yellow.

Other AI trains are shown in white.

By left-clicking in the list for the first time on an AI train, the

cameras become linked to that train. A red star appears at

the end of the line. This is partially equivalent to clicking on

Alt+9, but in this method the desired train is immediately

selected and may become the player train.

53

Here is the intermediate situation:

By left-clicking a second time on the AI train (usually when

it has completely appeared on the screen - if it is far away

from the player train this can require several seconds to

load the “world” around the train) the switch of control

occurs.

Here is the final situation:

The AI train string now becomes red and is moved to the

first position.The train can be driven, or set to autopilot

mode. The former player train becomes an AI train.

If the second left-click was performed with the Shift key

down, the former player train still becomes an AI train, but

it is put in a suspended mode (only if its speed is 0). It

won't move until it becomes a player train again. A

suspended train is shown in orange color on the Train List

window.

The new player train can can be switched to manual mode,

can also request to pass signals at danger with the TAB

command, and can be moved outside of its original path.

However before switching control to still another train, the

new player train must be returned to the original path or

put in suspend mode; or else it will disappear, as occurs

for AI trains running outside their path.

54

The sequence may be restarted to switch to a new train or to switch back to the initial player train.

Train switching also works in activity mode together with multiplayer mode, in the sense that the

dispatcher player can switch its played train, and the related information is sent to the client

players.

The Train List window is also available in Timetable mode. In this case the names of all trains

except the player train are shown in white (they can’t be driven), however with a single click on a

train in the window the external view cameras become linked to that train, as occurs with the Alt-9

command described below.

7.8.2 Switching to a static train

In the Train List window the drivable static consists (that is the ones that have at least an engine

provided with a cab) are also listed (in yellow color).

To ease recognition static consists are named STATIC plus the ID number as present in the .act

file (e.g. STATIC - 32768).

The procedure to select a static consist in order to drive it is similar to that used to drive another

non-static train train: with the first click on the static consist line in the Train List window the

camera (if there wasn't the Cab camera active) moves to the static consist. With the second click

the game enters into the cab of the static consist. If the second click occurs with the Shift key

pressed, the old player train goes into a suspended state (else it enters autopilot mode,

autonomously moving itself along its path).

The static consist becomes a standard train without a path - a pathless train. It runs in manual

mode, and so it can be managed with all the thrills and frills available for manual mode. Signals

can be cleared in the dispatcher window or alternatively requests for permission can be issued,

switches can be moved, direction can be changed, cars can be coupled and uncoupled. If the train

goes out of control (e.g. because of SPAD), CTRL+M has to be pressed first to exit emergency

braking.

With a stopped pathless train – if a new player train is selected in the Train List window, the

pathless train returns to being a STATIC consist.

The pathless train can also couple to another train (e.g. an AI train or the initial player train). The

coupled train becomes incorporated into the pathless train, but now more possibilities are

available:

1) The pathless train incorporating the AI train continues to be driven as a pathless train; later on

the run it could uncouple the incorporated train, which would continue autonomously if it is still on

its path.

2) By clicking once on the incorporated AI train line in the Train List window it is the pathless train

that becomes absorbed into the AI train, which now can operate on its path in autopilot mode or in

player driven mode.

3) Once the pathless train has coupled to the AI train, an uncouple operation can be performed

with the F9 window (between any couple of cars). The pathless train can be driven further (with

modified composition) and also the AI train can run further, provided both retain at least one

locomotive.

55

7.8.3 Waiting point considerations

A waiting point icon showing a hand has been added for the Track Monitor, that is shown when

WPs (waiting points) for new player trains are met in the path. This because the player should

know that his train (when run as AI train) would stop at a point for a certain time. The WP is red

when approaching it. When the train stops at it, it becomes yellow, and disappears when the time

to depart is reached. When the new player train is run in autopilot mode, the train automatically

stops for the required time at the WP.

If the activity foresees that the new player train has to execute an Extended AI Shunting function,

OR allows this function to be executed. When the train runs in autopilot mode such functions are

executed automatically; when it runs in player driven mode, the player must act to uncouple cars;

in this case pop-up messages based on the activity events window appear to help the player.

Care has been taken when the player is driving a train that was foreseen to disappear due to an

Extended AI Shunting function, as e.g. when it merges into another train or when it is part of a join-

and-split function and is incorporated within another train. In these cases, when the coupling

occurs, the player is automatically moved to the train that remains alive.

7.9 Changing the View

Open Rails provides all of the MSTS views plus additional view options:

 A 3D interior cabview option (where a 3D cabview file is available);

 Control of the view direction using the mouse (with the right-hand button pressed);

 The exterior views (keys 2,3,4,6) and the interior view (key 5) can be attached to any

train in the simulation by the Alt+9 key as described below

 The Alt+F9 key shows the Train List window, which not only allows attaching the

exterior views to any train, but also, in Activity mode, to move to the Cab and drive any

train in the simulation.

All of the required key presses are shown by the “F1 Help” key in the game. Note that some of the

key combinations are different in Open Rails than in MSTS. For instance, in Open Rails the cab

“Headout” views from the cab view are selected by the “Home” and “End” keys, and the view

direction is manipulated by the four arrow keys, or the mouse with the right-hand button

depressed.

56

The commands for each of the views are described below.

 Key 1 opens the 2D driver’s view from the interior of the controlling cab of the player

locomotive. The entire cab view can be moved to other cabs (if available) in the player

train by successive presses of Ctrl+E; the train must be stopped and the direction

switch in Neutral. The view can be changed to the fixed left, front, or right view by

clicking the left, up or right arrow keys. (The 2D view is constructed from three 2D

images, so the actual camera position can only be modified by editing the contents of

the .cvf file.) The headout views (if available) are selected by “Home” (right hand side,

looking forward) or “End” (left hand side, looking back) and the headout view direction is

controlled by the mouse with the right button depressed. If there are multiple

locomotives, Alt+PageUp and Alt+PageDown move the headout views.

 Key Alt+1 opens the 3D driver’s view (if the locomotive has a 3D cabview file) from the

interior of the controlling cab of the player locomotive. The camera position and view

direction are fully player controllable.

Rotation of the camera view in any direction is controlled by the mouse with the right-hand

button depressed (or alternatively by the four arrow keys). The camera’s position is moved

forward or backward along the train axis with the PageUp and PageDown keys, and moved

left or right or up or down with Alt + the four arrow keys. The headout views (if available) are

selected by “Home” (right hand side, looking forward) or “End” (left hand side, looking back)

and the outside view direction is controlled by the mouse with the right button depressed.

 Keys 2 and 3 open exterior views that move with the active train; these views are

centered on a particular “target” car in the train. The target car or locomotive can be

changed by pressing Alt+PageUp to select a target closer to the head of the train and

Alt+PgDown to select a target toward the rear. The 2-View selects the train’s head end

as the initial target, the 3-View the last car. Alt+Home resets the target to the front,

Alt+End to the rear of the train.

The camera’s position with respect to the target car is manipulated by the four arrow keys –

left or right arrows rotate the camera’s position left or right, up or down arrows rotate the

camera’s position up or down while remaining at a constant distance from the target. The

distance from the camera to the target is changed by zooming with the PageUp and

PageDown keys. Rotation of the camera view direction about the camera’s position is

controlled by holding down the Alt key while using the arrow buttons, or by moving the mouse

with the right mouse button depressed. The scroll wheel on the mouse zooms the screen

image; the field of view is shown briefly. Ctrl+8 resets the view angles to their default position

relative to the current target car.

 Key 4 is a trackside view from a fixed camera position with limited player control - the

height of the camera can be adjusted with the up and down arrow keys. Repeated

pressing of the 4-key may change the position along the track.

 Key 5 is an interior view that is active if the active train has a “passenger view”

declaration in any of its cars (or in the caboose). The view direction can be rotated by

the arrow keys or the mouse with right button pressed. The camera position is moved

forward or backward along the train axis with the PageUp and PageDown keys, and

moved left or right or up or down with Alt + the four arrow keys. Successive presses of

57

the 5 key will move the view to successive views (if they exist) within the active train.

Note that the “active train” may be an AI train selected by Ctrl+9.

 Key 6 is the brakeman’s view – the camera is assumed to be at either end of the train,

selected by Alt+Home and Alt+End. Rotation is controlled by the arrow keys or mouse

with right button depressed. There is no brakeman’s view for a single locomotive.

 Key 8 is the free camera view; the camera starts from the current Key-2 or Key-3 view

position, and moves forward (PageUp key) or back (PageDown key) along the view

direction. The direction is controlled by the arrow keys or the mouse with right button

depressed. The speed of motion is controlled by the Shift (increase) or Ctrl (decrease)

keys. Open Rails saves the position of previous Key 8 views and can recall them by

repeatedly pressing Shift+8.

 Alt+9 is an ORTS feature: it controls the target train for the Key 2, 3, 4, 5 and 6 views

during activities or timetable operations. If there is more than one active train or there

are consists declared in the activity for pickup, pressing this key combination will set

the view to display each train or consist in turn. To return to the player train, press the

9 key. There may be a delay for each change of view as Open Rails calculates the

new image. The cab view and data values in the F4 window always remain with the

Player train. To directly select which train is to be shown either use the Dispatcher

Window or the Alt+F9 option described below. In the Dispatcher Window, locate the

train that you wish to view, and click the mouse on it until the block representing it

turns red; then click on the button “Show in game” in the Dispatcher Window and then

return to the Open Rails window.

 Alt+F9 is an enhancement of the Alt+9 feature that displays the Train List window

showing the names of all of the currently active trains. Click on the name of the

desired train to move the exterior views to the selected train. In Activity mode, double-

clicking on a train’s name in this window transfers the Cabview and control of the

selected train to the player. In Timetable mode, only the exterior views are selected.

 Key 9 resets the target train for the Key 2,3,4,5 and 6 views to the Player train.

Holding the Shift key with any motion command speeds up the movement, while holding the Ctrl

key slows it.

Note that view direction control using the mouse with right button pressed differs slightly from

using Alt plus the arrow keys – the view direction can pass through the zenith or nadir, and the

direction of vertical motion is then reversed. Passing back through the zenith or nadir restores

normal behavior.

Whenever frame rates fall to unacceptable levels players are advised to adjust camera positions to

cull some models from being in view and to adjust the camera again to include more models when

frame rates are high.

7.10 Toggling Between Windowed Mode and Full-screen

You can toggle at any time between windowed mode and full-screen by pressing Alt+Enter.

58

7.11 Modifying the Game Environment

7.11.1 Time of Day

In activity mode Open Rails software reads the StartTime from the MSTS .act file to determine

what the game time is for the activity. In combination with the longitude and latitude of the route

and the season, Open Rails computes the actual sun position in the sky. This provides an

extremely realistic representation of the time of day selected for the activity. For example, 12 noon

in the winter will have a lower sun position in the northern hemisphere than 12 noon in the

summer. Open Rails game environment will accurately represent these differences.

Once the activity is started, Open Rails software allows the player to advance or reverse the

environment “time of day” independently of the movement of trains. Thus, the player train may sit

stationary while the time of day is moved ahead or backward. The keys to command this depend

from the national settings of the keyboard, and can be derived from the key assignment list shown

by pressing F1.

In addition, Open Rails offers functionality similar to the time acceleration switch for MSTS.

Use Alt+PageUp or Alt+PageDown keys to increase or decrease the speed of the game clock.

In a multiplayer session, all clients’ time, weather and season selections are overridden by those

set by the server.

7.11.2 Weather

When in activity mode Open Rails software determines the type of weather to display from the

Weather parameter in the MSTS Activity file. In the other modes the weather can be selected in

the start menu. A Weather Change Activity Event can be included in an activity that will modify the

weather during the activity.

7.11.3 Modifying Weather at Runtime

The following commands are available at runtime (keys not shown here can be found in the key

assignment list obtained pressing F1):

 Overcast increase/decrease: increases and decreases the amount of clouds

 fog increase/decrease

 precipitation increase/decrease.

This demonstrates Open Rails software’s foundation for dynamic weather effects in the game.

Moreover, pressing Alt+P can change the weather from clear to raining to snowing and back to

clear.

7.11.4 Season

In activity mode Open Rails software determines the season, and its related alternative textures to

display from the Season parameter in the MSTS Activity file. In other modes the player can select

the season in the start menu.

59

7.12 Screenshot - Print Screen

Press the keyboard Print Screen key to capture an image of the game window. This will be saved

by default in the file C:\Users\<username>\Pictures\Open Rails\Open Rails <date and time>.png1

Although the image is taken immediately, there may be a short pause before the confirmation

appears. If you hold down the Print Screen key, then OR takes multiple images as fast as it can.

The key to capture the current window - Alt+Print Screen - is not intercepted by OR.

7.13 Suspending or Exiting the Game

You can suspend or exit the game by pressing the

ESC key at any time. The window shown at the

right will appear.

The window is self-explanatory.

If you are running OR in a Window, you can also

exit OR by simply clicking on the x on the right top

of the OR window.

1 Windows also refers to the Pictures folder by the name “My Pictures”

60

7.14 Save and Resume

Open Rails provides Save and Resume facilities and keeps every save until you choose to delete

it.

During the game you can save your session at any time by pressing F2.

You can view the saved sessions by choosing an activity and then pressing the Resume/Replay...

button.

This will display the list of any Saves you made for this activity:

61

To help you identify a Save, the list provides a screenshot and date and also distance travelled in

metres and the time and position of the player's train. This window can be widened to show the full

width of the strings in the left panel

7.14.1 Saves from Previous OR Versions

You should be aware that these Saves will only be useful in the short term as each new version of

Open Rails will mark Saves from previous versions as potentially invalid (e.g. the second entry in

the list below).

62

When you resume from such a Save, there will be a warning prompt.

The Save will be tested during the loading process. If a problem is detected, then you will be

notified.

This Save and any Saves of the same age or older will be of no further value and will be marked

as invalid automatically (e.g. the 3rd entry in the list). The button in the bottom left corner of the

menu deletes all the invalid Saves for all activities in Open Rails.

7.15 Save and Replay

As well as resuming from a Save, you can also replay it just like a video. All the adjustments you

made to the controls (e.g. opening the throttle) are repeated at the right moment to re-create the

activity. As well as train controls, changes to the cameras are also repeated.

Just like a "black box flight recorder" Open Rails is permanently in recording mode, so you can

save a recording at any time just by pressing F2 Save.

Normally, you would choose the replay option by Menu > Resume > Replay from start.

63

A second option Menu > Resume > Replay from previous save lets you play back a shortened

recording. It resumes from the most recent Save it can find and replays from that point onwards.

You might use it to play back a 5 minute segment which starts an hour into an activity.

A warning is given when the replay starts and a replay countdown appears in the F5 Head Up

Display.

Warning Countdown

By default, the simulation pauses when the replay is exhausted. Use Pause replay at end on the

Saved Games window to change this.

64

Little can usefully be achieved by adjusting the train controls during replay, but the camera

controls can be freely adjusted. If changes are made (e.g. switching to a different camera view or

zooming out), then replay of the camera controls is suspended while replay of the train controls

continues. The result is a bit like editing a video. To resume the replay of the camera controls, just

press Esc to open the Pause Menu and then choose Continue playing.

A possible future development may be to edit the replay file to adjust times or to add messages to

provide a commentary. This would allow you to build demonstrations and tutorials.

Replay is a feature which is unique to Open Rails. You can use it to make your own recordings

and Open Rails provides a way to exchange them with other players.

7.15.1 Exporting and Importing Save Files

To export a Save file, use the command:

 Menu > Options > Resume > Import/export saves > Export to Save Pack

OR will pack the necessary files into a single archive file with the extension "ORSavePack" and

place it in the folder Open Rails\Save Packs.

This ORSavePack file is a zip archive which contains the replay commands, a screenshot at the

moment of saving, a Save file (so that Open Rails can offer its Resume option) and a log file. This

arrangement means that the ORSavePack archive is ideal for attaching to a bug report.

You can use the Import Save Pack button on the same window to import and unpack a set of files

from an ORSavePack archive. They will then appear in your Saved Games window.

7.16 Analysis Tools

The extended HUDs provide a rich amount of information for analysis, evaluation and to assist in

troubleshooting.

You can move through the sequence of HUD displays by repeatedly pressing Shift+F5.

You can turn off any extended HUD, while continuing to show the basic HUD, by pressing Alt+F5.

Pressing Alt+F5 again returns the display of the currently active extended HUD.

65

7.16.1 Extended HUD for Consist Information

This page shows in the first line data about the whole train. Under “Player” you will find the train

number as assigned by OR followed by an “F” if the forward cab is selected, and an “R” if the rear

cab is selected.

“Tilted” is true in case the consist name ends with “tilted” (e.g. ETR460_tilted.con), in which case it

means that it is a tilting train.

“Control mode” shows the actual control mode. Read more about this here.

Cab aspect shows the aspect of next signal.

In the other lines data about the train cars are shown. Data are mostly self-explanatory. Under

Drv/Cabs a D appears if the car is drivable, and an F and/or a R appear if the car has a front

and/or a rear cab.

7.16.2 Extended HUD for Locomotive Information

The next extended HUD display shows locomotive information.

As can be seen from this screenshot related to a fictitious train with a diesel, an electric and a

steam loco, information about diesel and electric locomotives is contained on a single line, while

information about steam locomotives includes a large set of parameters, which shows the

sophistication of OR's steam physics.

66

In the bottom part of this HUD two moving graphs show the evolution in time of the throttle value

and of the power of the player locomotive (the one where the active cab resides).

7.16.3 Extended HUD for Brake Information

This extended HUD display includes all the information of the basic HUD plus Brake status

information. Information is shown for all cars. The first number shows the car UiD in the train, as

found in the consist file or the activity file; the following alphanumeric string shows the brake

system (1P: single-pipe system, V: vacuum etc.) and the current state of the air brakes on the unit.

More information on this display can be found in Open Rails Braking and F9 Train Operations

Monitor.

7.16.4 Extended HUD for Train Force Information

In the first part of this display some information related to the player locomotive is shown. The

information format differs if advanced adhesion has been selected or not in the Simulation

Options.

The table part shows total force for up to ten locos/cars in the train. The first number shows the

position of the car in the train. The second number is the total force acting on the car. This is the

sum of the other forces after the signs are properly adjusted. The next number is the motive force

which should only be non-zero for locomotives, and that becomes negative during dynamic

braking. Next number is the brake force. Follows the friction force calculated from the Davis

equation. The following value is the force due to gravity. Next values are the friction forces due to

the car being in a curve and/or in a tunnel. The next value is the coupler force between this car

and the next (negative is pull and positive is push). The mass in kg and the track elevation in %

under the car follow. All of the force values are in Newtons. Many of these values are relative to

the orientation of the car, but some are relative to the train. If applicable, two further fields appear:

the first is "True" if the car is flipped with respect to the train or “False” otherwise, while the second

field signals coupler overload.

67

At the bottom of the picture two moving graphs are displayed.

The upper graph displays the motive force in % of the player locomotive. Green colour means

tractive force, red colour means dynamic brake force.

The lower graph refers – roughly speaking - to the level of refinement used to compute axle force.

7.16.5 Extended HUD for Dispatcher Information

The next extended HUD displays Dispatcher Information. It is very useful to troubleshoot activities

or timetables. The player train and any AI trains will show in the Dispatcher Information, a line for

each train.

A detailed explanation of the various columns follows:

 Train: Internal train number, with P=Passenger and F=Freight.

 Travelled: distance travelled.

Gives an indication if all is well. If a train started an hour ago and 'travelled' is still 0.0,

something's clearly wrong.

 Speed: present speed.

 Max: maximum allowed speed.

 AI Mode: gives an indication of what the AI train is 'doing'.

68

Possible states:

 INI: train is initializing. Normally you would not see this.

 STP: train is stopped other than in a station. The reason for the stop is shown in

"Authority".

 BRK: train is preparing to stop. Does not mean it is actually braking, but it 'knows' it

has to stop, or at least reduce speed, soon.

Reason, and distance to the related position, are shown in "Authority" and "Distance".

 ACC: train is accelerating, either away from a stop or because of a raise in allowed

speed.

 RUN: train is running at allowed speed.

 FOL: train is following another train in the same signal section.

Its speed is now derived from the speed of the train ahead.

 STA: train is stopped in station.

 WTP: train is stopped at waiting point.

 EOP: train is approaching end of path.

 STC: train is Static train, or train is in Inactive mode if waiting for next action.

 AI data : shows throttle (first three digits) and brake (last three digits) positions when AI

train is running, but shows departure time (booked) when train is stopped at station or

waiting point, or shows activation time when train is in inactive mode (state STC).

 Mode :

 SIGN (signal)

 NODE

 MAN: train is in manual mode (only player train, see here)

 OOC: train is out of control

 EXPL: train is in explorer mode (only player train)

When relevant, this field also shows delay (in minutes), e.g. S+05 mean Signal

mode, 5 minutes delay.

 Auth: End of "authorization" info - that is, the reason why the train is preparing to stop or

slow down.

Possible reasons are :

 SPDL: speed limit imposed by speed sign.

 SIGL: speed limit imposed by signal.

 STOP: signal set at state "STOP".

 REST: signal set at state "RESTRICTED" (train is to reduce speed at approaching this

signal).

 EOA: end of authority - generally only occurs in non-signaled routes or area, where

authority is based on NODE mode and not SIGNAL mode.

69

 STAT: station.

 TRAH: train ahead.

 EOR: end of train's route, or subroute in case the train approaches a reversal point.

 AUX: all other authorization types, including auxiliary action authorizations (e.g.

waiting points).

When the control mode is “NODE” the column “Auth” can show following strings:

 EOT: end of track

 EOP: end of path

 RSW: switch reserved by another train

 LP: train is in loop

 TAH: train ahead

 MXD: free run for at least 5000 meters

 NOP: no path reserved.

When the control mode is “OOC” the column “Auth” can show following strings:

 SPAD: passed signal at danger

 RSPD: passed signal at danger running backwards

 OOAU: passed authority limit

 OOPA: out of path

 SLPP: slipped into path

 SLPT: slipped to end of track

 OOTR: out of track

 MASW: misaligned switch.

 Distance: distance to the authority location.

 Signal: aspect of next signal (if any).

 Distance: distance to this signal.

Note that if signal state is STOP, and it is the next authority limit, there is a difference

of about 30m between authority and signal distance. This is the 'safety margin' that AI

trains keep to avoid accidentally passing a signal at danger.

 Consist: the first part of the train's service name. Only for the player, always the

“PLAYER” string is displayed.

 Path: the state of the train's path.

The figure left of the "=" sign is the train's present subpath counter : a train's path is

split into subpaths when its path contains reversal points.

The details between { and } are the actual subpath.

Following the final } can be x<N>, this indicates that at the end of this subpath the

train will move on to the subpath number N.

70

Path details :

 The path shows all track circuit sections which build this train's path. Track

circuit sections are bounded by nodes, signals or cross-overs, or end-of-track.

Each section is indicated by its type :

 - is plain train section.

 > is switch (no distinction is made for facing or trailing switch).

 + is crossover.

 [is end-of-track.

Following each section is the section state. Numbers in this state refer to the train numbers

as shown at the start of each row. Below, <n> indicates such a number.

 <n> section is occupied by train <n>.

 (<n>) section is reserved for train <n>.

 # (either with <n> or on its own) section is claimed by a train which is waiting for a

signal.

 & (always in combination with <n>) section is occupied by more than one train.

 deadlock info (always linked to a switch node) :

 * possible deadlock location - start of a single track section shared with a train running

in opposite direction.

 ^ active deadlock - train from opposite direction is occupying or has reserved at least

part of the common single track section.

Train will be stopped at this location - generally at the last signal ahead of this node.

 ~ active deadlock at that location for other train - can be significant as this other train

can block this train's path.

The dispatcher works by reserving track vector nodes for each train. An AI train will be allowed to

move (or start) only if all of the nodes up to the next potential passing location are not reserved for

another train. If this condition cannot be met, in Timetable Mode the AI train will not spawn.

There are other reasons why an AI train might not appear in Timetable Mode. The current

dispatcher assumes that all routes are unsignaled. The dispatcher issues a track authority (which

is similar to a track warrant) to all trains. For an AI train to start, the tracks it needs must not be

already reserved for another train. The dispatcher compares the paths of the trains to identify

possible passing points and then reserves tracks for a train up until a passing point. When a train

gets near the next passing point the reservation is extended to the next one. The end result is that

in Timetable Mode an AI train cannot be placed on a track if that section of track is already

occupied by or reserved for another train. A section of track is any track bounded by either a

switch or a signal.

Also, a train is not created if it would be partly or fully superimposed on an already existing train, or

if its path is not long enough for it. This applies to both Timetable Mode and Activity Mode.

71

7.16.6 Extended HUD for Debug Information

The last extended HUD display shows Debug information.

The first line (“Logging enabled”) refers to logging as described in paragraphs 6.6 and 6.7.

A wide variety of parameters is shown, from frame wait and render speeds in milliseconds, to

number of primitives, Process Thread resource utilization and number of Logical CPUs from the

system’s bios. They are very useful in case of OR stuttering, to find out where the bottleneck is.

The values in the “Camera” line refer to the two tile coordinates and to the three coordinates within

the tile.

At the bottom of the picture, some moving graphs are displayed that show the actual load of the

computer.

 Referring to memory use, about at least 400 MB must remain free to avoid out-of-memory

exceptions

72

7.16.7 Viewing Interactive Track Items

By pressing Ctrl+Alt+F6 at runtime you get a picture like this one that allows you to take note of

the interactive IDs for debugging purposes.

7.16.8 Viewing Signal State and Switches

By pressing Ctrl+Alt+F11 you get a picture like the following that shows the state of the signals

and switches on the path.

73

7.16.9 Sound Debug Window

By pressing Alt+S this window opens:

It shows in the upper part the list of all active .sms files; by expanding the detail of a specific

.sms file, the list of all sound streams is displayed, as well as their state. On the left the value of

the analog sound variables is displayed for the selected .sms file. The volume refers to the first

stream of the selected sound file.

Active and inactive sounds toggle passing from internal to external views and vice-versa.

74

7.17 OpenRailsLog.txt Log file

When the “Logging” option in the main window is checked, a log file named OpenRailsLog.txt file

is generated. This file contains rich information about the execution of the game session, allowing

identification of critical problems. This file should always be attached to requests of support in

case of problems.

The contents of the file are often self-explanatory, and therefore can be evaluated by the same

contents developer. It includes reports of various errors in the MSTS files which are ignored by

OR, including missing sound files, unrecognized terms in some files, etc. Selecting the

Experimental Option ”Show shape warnings” described here allows OR to report errors found in

shape files in the log file. It includes also reports about malfunctions in the gaming session, such

as trains passing red signals, as well as OR malfunctions.

7.18 Code-embedded Logging Options

OR source code is freely downloadable; check the www.OpenRails.org website for this. Within the

code there are some debug options that, when activated, generate specific extended log files, e.g.

for analysis of signal and of AI train behavior. Short specific info on this can be provided to people

with programming skills.

7.19 Testing in Autopilot Mode

Autopilot mode is a powerful tool to help in testing activities.

http://www.openrails.org/

75

8 Open Rails Physics
Open Rails physics is in an advanced stage of development. The physics structure is divided into

logical classes; more generic classes are parent classes, more specialized classes inherit

properties and methods of their parent class. Therefore, the description for train cars physics is

also valid for locomotives (because a locomotive is a special case of a train car). All parameters

are defined within the .wag or .eng file. The definition is based on MSTS file format and some

additional ORTS based parameters. To avoid possible conflicts in MSTS, the “ORTS” prefix is

added to every OpenRails specific parameter (such as ORTSMaxTractiveForceCurves).

The .wag or .eng file may be placed as in MSTS in the TRAINS\TRAINSET\TrainCar\ folder

(where TrainCar is the name of the train car folder). If OR-specific parameters are used, or if

different .wag or .eng files are used for MSTS and OR, the preferred solution is to place the OR-

specific .wag or .eng file in a created folder TRAINS\TRAINSET\TrainCar\OpenRails\ (see here for

more).

8.1 Train Cars (WAG, or “Wagon” Part of ENG file)

The behavior of a train car is mainly defined by a resistance / resistive force (a force needed to

pull a car). Train car physics also includes coupler slack and braking. In the description below, the

Wagon section of the WAG / ENG file is discussed.

8.1.1 Resistive Forces

Open Rails physics calculates resistance based on real world physics: gravity, mass, rolling

resistance and optionally curve resistance. This is calculated individually for each car in the train.

The program calculates rolling resistance, or friction, based on the Friction parameters in the

Wagon section of .wag/.eng file. Open Rails identifies whether the .wag file uses the FCalc utility or

other friction data. If FCalc was used to determine the Friction variables within the .wag file, Open

Rails compares that data to the Open Rails Davis equations to identify the closest match with the

Open Rails Davis equation. If no-FCalc Friction parameters are used in the .wag file, Open Rails

ignores those values, substituting its actual Davis equation values for the train car.

A basic (simplified) Davis formula is used in the following form:

Where res_force is the friction force of the car. The rolling resistance can be defined either by

FCalc or ORTSDavis_A, _B and _C components. If one of the ORTSDavis components is zero,

FCalc is used. Therefore, e.g. if the data doesn’t contain the B part of the Davis formula, a very

small number should be used instead of zero.

When a car is pulled from steady state, an additional force is needed due to higher bearing forces.

The situation is simplified by using a different calculation at low speed (5 mph and lower).

Empirical static friction forces are used for different classes of mass (under 10 tons, 10 to 100 tons

and above 100 tons). In addition, if weather conditions are poor (snowing is set), the static friction

is increased.

When running on a curve and if the “Curve dependent resistance” option is enabled, additional

resistance is calculated, based on the curve radius, rigid wheel base, track gauge and super

elevation. The curve resistance has its lowest value at the curve's optimal speed. Running at

higher or lower speed causes higher curve resistance. The worst situation is starting a train from

zero speed. The track gauge value can be set by ORTSTrackGauge parameter, otherwise 1435

76

mm is used. The rigid wheel base can be also set by ORTSRigidWheelBase, otherwise the value

is estimated. Further details are discussed later.

When running on a slope (uphill or downhill), additional resistance is calculated based on the car

mass taking into account the elevation of the car itself. Interaction with the “car vibration feature” is

a known issue (if the car vibrates the resistance value oscillate).

8.1.2 Coupler Slack

Slack action for couplers is introduced and calculated the same way as in MSTS.

8.1.3 Adhesion of Locomotives – Settings Within the Wagon Section of ENG files

MSTS calculates the adhesion parameters based on a very strange set of parameters filled with

an even stranger range of values. Since ORTS is not able to mimic the MSTS calculation, a

standard method based on the adhesion theory is used with some known issues in use with MSTS

content.

MSTS “Adheasion” (sic) parameters are not used in ORTS. Instead, a new set of parameters is

used, which must be inserted within the “wagon” section of the .ENG file:

ORTSAdhesion (

 ORTSCurtius_Kniffler (A B C D)

)

The A, B and C values are coefficients of a standard form of various empirical formulas, e.g.

Curtius-Kniffler or Kother. The D parameter is used in the advanced adhesion model described

later.

From A, B and C a coefficient CK is computed, and the adhesion force limit is then calculated by

multiplication of CK by the car mass and the acceleration of gravity (9.81), as better explained

later.

 The adhesion limit is only considered in the adhesion model of locomotives.

The adhesion model is calculated in two possible ways. The first one –the simple adhesion model

– is based on a very simple threshold condition and works similarly to the MSTS adhesion model.

The second one – the advanced adhesion model – is a dynamic model simulating the real world

conditions on a wheel-to-rail contact and will be described later. The advanced adhesion model

uses some additional parameters such as:

ORTSAdhesion (

 ORTSSlipWarningThreshold (T)

)

where T is the wheelslip percentage considered as a warning value to be displayed to the driver;

and:

ORTSAdhesion(

 Wheelset (

 Axle (

ORTSInertia (

 Inertia)

)

)

)

where Inertia is the model inertia in kg.m2 and can be set to adjust the advanced adhesion model

dynamics. The value considers the inertia of all the axles and traction drives. If not set, the value is

estimated from the locomotive mass and maximal power.

77

The first model -simple adhesion model - is a simple tractive force condition-based computation. If

the tractive force reaches its actual maximum, the wheel slip is indicated in HUD view and the

tractive force falls to 10% of the previous value. By reducing the throttle setting adherence is

regained. This is called the simple adhesion model.

The second adhesion model (advanced adhesion model) is based on a simplified dynamic

adhesion theory. Very briefly, there is always some speed difference between the wheel speed of

the locomotive and the longitudinal train speed when the tractive force is different from zero. This

difference is called “wheel slip / wheel creep”. The adhesion status is indicated in the HUD “Force

Information” view by the “Wheel Slip” parameter and as a warning in the general area of the HUD

view. For simplicity, only one axle model is computed (and animated). A tilting feature and the

independent axle adhesion model will be introduced in the future.

The heart of the model is the slip characteristics (picture below).

The “wheel creep” describes the stable area of the characteristics and is used in the most of the

operation time. When the tractive force reaches the actual maximum of the slip characteristics,

force transition falls down and more power is used to speed up the wheels, so called “wheel slip”.

To avoid the loss of the tractive force, use the throttle in combination with sanding to return to the

stable area (wheel creep area). A possible sequence of the wheel slip development is shown on

the pictures below. The “Wheel slip” value is displayed as a value relative to the best adhesion

conditions for actual speed and weather. The value of 63% means very good force transition. For

values higher than “(ORTSadhesion (ORTSSlipWarningThreshold))” or 70% by default, the

“Wheel slip” warning is displayed, but the force transition is still very good. This indication should

warn you to use the throttle very carefully. Exceeding 100%, the “Wheel slip” message is

displayed and the wheels are starting to speed up, which can be seen on the speedometer or in

external view 2. To reduce the wheel slip, use “throttle down”, sanding or the locomotive brake.

78

The “actual maximum” of the tractive force is based on the Curtius-Kniffler adhesion theory and

can be adjusted by the aforementioned ORTSCurtius_Kniffler (A B C D) parameters, where A, B,

C are coefficients of Curtius-Kniffler, Kother or similar formula. By default, Curtius-Kniffler is used.

This means that the maximum is related to the speed of the train, or to the weather conditions.

The “D” parameter is used in an advanced adhesion model and should always be 0.7.

There are some additional parameters in the “Force Information” HUD view. The axle/wheel is

driven by the “Axle drive force” and braked by the “Axle brake force”. The “Axle out force” is the

output force of the adhesion model (used to pull the train). To compute the model correctly the

FPS rate needs to be divided by a “Solver dividing” value in a range from 1 to 50. By default, the

Runge-Kutta4 solver is used to obtain the best results. When the “Solver dividing” value is higher

than 40, in order to reduce CPU load the Euler-modified solver is used instead.

In some cases when the CPU load is high, the time step for the computation may become very

high and the simulation may start to oscillate (the “Wheel slip” rate of change (in the brackets)

becomes very high). There is a stability correction feature that modifies the dynamics of the

adhesion characteristics. Higher instability can cause a huge wheel slip. You can use the

“DebugResetWheelSlip” (“Ctrl+X” keys by default) command to reset the adhesion model. If you

experience such behavior most of time, use the basic adhesion model instead by pressing

“DebugToggleAdvancedAdhesion” (“Ctrl+Alt+X” keys by default).

Another option is to use a Moving average filter available in the Simulation Options. The higher the

value, the more stable the simulation will be. However, the higher value causes slower dynamic

response. The recommended range is between 10 and 50.

To match some of the real world features, the “Wheel slip” event can cause automatic zero throttle

setting. Use the “Engine (ORTS (ORTSWheelSlipCausesThrottleDown))” Boolean value of the

ENG file.

79

8.2 Engine – Classes of Motive Power

Open Rails software provides for different classes of engines: diesel, electric, steam and default. If

needed, additional classes can be created with unique performance characteristics.

8.2.1 Diesel Locomotives in General

The diesel locomotive model in ORTS simulates the behavior of two basic types of diesel engine

driven locomotives– diesel-electric and diesel-mechanical. The diesel engine model is the same

for both types, but acts differently because of the different type of load. Basic controls (direction,

throttle, dynamic brake, air brakes) are common across all classes of engines. Diesel engines can

be started or stopped by pressing the START/STOP key (Shift+Y in English keyboards). The

starting and stopping sequence is driven by a “starter” logic, which can be customized, or is

estimated by the engine parameters.

8.2.1.1 Starting the Diesel Engine

To start the engine, simply press the START/STOP key once. The direction controller must be in

the neutral position (otherwise, a warning message pops up). The engine RPM (revolutions per

minute) will increase according to its speed curve parameters (described later). When the RPM

reaches 90% of StartingRPM (67% of IdleRPM by default), the fuel starts to flow and the exhaust

emission starts as well. RPM continues to increase up to StartingConfirmationRPM (110% of

IdleRPM by default) and the demanded RPM is set to idle. The engine is now started and ready to

operate.

8.2.1.2 Stopping the Diesel Engine

To stop the engine, press the START/STOP key once. The direction controller must be in the

neutral position (otherwise, a warning message pops up). The fuel flow is cut off and the RPM will

start to decrease according to its speed curve parameters. The engine is considered as fully

stopped when RPM is zero. The engine can be restarted even while it is stopping (RPM is not

zero).

8.2.1.3 Starting or Stopping “Helper” Diesel Engines

By pressing the Diesel helper START/STOP key (Ctrl+Y on English keyboards), the diesel

engines of helper locomotives can be started or stopped. Also consider disconnecting the unit

from the multiple-unit (MU) signals instead of stopping the engine (see here, “Toggle MU

connection”).

It is also possible to operate a locomotive with the own engine off and the helper’s engine on.

8.2.1.4 ORTS Specific Diesel Engine Definition

If no ORTS specific definition is found, a single diesel engine definition is created based on the

MSTS settings. Since MSTS introduces a model without any data crosscheck, the behavior of

MSTS and ORTS diesel locomotives can be very different. In MSTS, MaxPower is not considered

in the same way and you can get much “better” performance than expected. In ORTS, diesel

engines cannot be overloaded.

No matter which engine definition is used, the diesel engine is defined by its load characteristics

(maximum output power vs. speed) for optimal fuel flow and/or mechanical characteristics (output

80

torque vs. speed) for maximum fuel flow. The model computes output power / torque according to

these characteristics and the throttle settings. If the characteristics are not defined (as they are in

the example below), they are calculated based on the MSTS data and common normalized

characteristics.

In many cases the throttle vs. speed curve is customized because power vs. speed is not linear. A

default linear throttle vs. speed characteristics is built in to avoid engine overloading at lower

throttle settings. Nevertheless, it is recommended to adjust the table below to get more realistic

behavior.

In ORTS, single or multiple engines can be set for one locomotive. In case there is more than one

engine, other engines act like “helper” engines (start/stop control for helpers is Ctrl+Y by default).

The power of each active engine is added to the locomotive power. The number of such diesel

engines is not limited.

If the ORTS specific definition is used, each parameter is tracked and if one is missing (except in

the case of those marked with “Optional”), the simulation falls back to use MSTS parameters.

Engine(
…

ORTSDieselEngines (2
 Diesel (
 IdleRPM (510)
 MaxRPM (1250)
 StartingRPM (400)
 StartingConfirmRPM (570)
 ChangeUpRPMpS (50)
 ChangeDownRPMpS (20)
 RateOfChangeUpRPMpSS (5)
 RateOfChangeDownRPMpSS (5)
 MaximalPower (300kW)
 IdleExhaust (5)
 MaxExhaust (50)
 ExhaustDynamics (10)

Number of engines

Idle RPM
Maximal RPM
Starting RPM
Starting confirmation RPM
Increasing change rate RPM / s
Decreasing change rate RPM / s
Jerk of ChangeUpRPMpS RPM / s2
Jerk of ChangeDownRPMpS RPM / s2
Maximal output power
Num of exhaust particles at IdleRPM
Num of exhaust particles at MaxRPM
Exhaust particle multiplier at transient

81

 ExhaustDynamicsDown (10)
 ExhaustColor (00 fe)
 ExhaustTransientColor (00 00 00 00)
 DieselPowerTab (
 0 0
 510 2000
 520 5000
 600 2000
 800 70000
 1000 100000
 1100 200000
 1200 280000
 1250 300000
)
 DieselConsumptionTab (
 0 0
 510 10
 1250 245
)
 ThrottleRPMTab (
 0 510
 5 520
 10 600
 20 700
 50 1000
 75 1200
 100 1250
)
 DieselTorqueTab (
 0 0
 510 25000
 1250 200000
)
 MinOilPressure (40)
 MaxOilPressure (90)
 MaxTemperature (120)
 Cooling (3)

 TempTimeConstant (720)
 OptTemperature (90)
 IdleTemperature (70)
)

 Diesel (
 ///the same as above or different
)

Multiplier for down transient (Optional)
Exhaust color at steady state
Exhaust color at RPM changing
Diesel engine power table
 RPM Power in Watts

Diesel engine fuel consumption table
 RPM Specific consumption g/kWh

Diesel engine RPM vs. throttle table
 Throttle % Demanded RPM

Diesel engine RPM vs. torque table
 RPM Force in Newtons

Min oil pressure PSI
Max oil pressure PSI
Maximal temperature Celsius
Cooling 0=No cooling, 1=Mechanical,
2= Hysteresis, 3=Proportional
Rate of temperature change
Normal temperature Celsius
Idle temperature Celsius

8.2.1.5 Diesel Engine Speed Behavior

The engine speed is calculated based on the RPM rate of change and its rate of change. The

usual setting and the corresponding result is shown below. ChangeUpRPMpS means the slope of

RPM, RateOfChangeUpRPMpSS means how fast the RPM approaches the demanded RPM.

82

8.2.1.6 Fuel Consumption

Following the MSTS model, ORTS computes the diesel engine fuel consumption based on .eng

file parameters. The fuel flow and level are indicated by the HUD view. Final fuel consumption is

adjusted according to the current diesel power output (load).

8.2.1.7 Diesel Exhaust

The diesel engine exhaust feature can be modified as needed. The main idea of this feature is

based on the general combustion engine exhaust. When operating in a steady state, the color of

the exhaust is given by the new ENG parameter “engine (ORTS (Diesel (ExhaustColor)))”.

The amount of particles emitted is given by a linear interpolation of the values of “engine(ORTS

(Diesel (IdleExhaust)))” and “engine(ORTS (Diesel (MaxExhaust)))” in the range from 1 to 50. In a

transient state, the amount of the fuel increases but the combustion is not optimal. Thus, the

quantity of particles is temporarily higher: e.g. multiplied by the value of

“engine(ORTS (Diesel (ExhaustDynamics)))” and displayed with the color given by

“engine(ORTS(Diesel(ExhaustTransientColor)))”.

The format of the “color” value is (aarrggbb) where:

aa = intensity of light; rr = red color component; gg = green color component; bb = blue color

component, and each component is in HEX number format (00 to ff).

83

8.2.1.8 Cooling System

ORTS introduces a simple cooling and oil system within the diesel engine model. The engine

temperature is based on the output power and the cooling system output. A maximum value of

100°C can be reached with no impact on performance. It is just an indicator, but the impact on the

engine’s performance will be implemented later. The oil pressure feature is simplified and the

value is proportional to the RPM. There will be further improvements of the system later.

8.2.2 Diesel-Electric Locomotives

Diesel-electric locomotives are driven by electric traction motors supplied by a diesel-generator

set. The gen-set is the only power source available, thus the diesel engine power also supplies

auxiliaries and other loads. Therefore, the output power will always be lower than the diesel

engine rated power.

In ORTS, the diesel-electric locomotive can use ORTSTractionCharacteristics or tables of

ORTSMaxTractiveForceCurves to provide a better approximation to real world performance. If a

table is not used, the tractive force is limited by MaxForce, MaxPower and MaxVelocity. The

throttle setting is passed to the ThrottleRPMTab, where the RPM demand is selected. The output

force increases with the Throttle setting, but the power follows maximal output power available

(RPM dependent).

8.2.3 Diesel-Hydraulic Locomotives

Diesel-hydraulic locomotives are not implemented in ORTS. However, by using either

ORTSTractionCharacteristics or ORTSMaxTractiveForceCurves tables, the desired performance

can be achieved, when no gearbox is in use and the DieselEngineType is “electric”.

8.2.4 Diesel-Mechanical Locomotives

ORTS features a mechanical gearbox feature that mimics MSTS behavior, including automatic or

manual shifting. Some features not well described in MSTS are not yet implemented, such as

GearBoxBackLoadForce, GearBoxCoastingForce and GearBoxEngineBraking.

Output performance is very different compared with MSTS. The output force is computed using

the diesel engine torque characteristics to get results that are more precise.

8.3 Electric Locomotives

At the present time, diesel and electric locomotive physics calculations use the default engine

physics. Default engine physics simply uses the MaxPower and MaxForce parameters to

determine the pulling power of the engine, modified by the Reverser and Throttle positions. The

locomotive physics can be replaced by traction characteristics (speed in mps vs. force in Newtons)

as described below.

Some OR-specific parameters are available in order to improve the realism of the electric system.

Since the simulator does not know whether the pantograph in the 3D model is up or down, you

can set some additional parameters in order to add a delay between the time when the command

to raise the pantograph is given and when the pantograph is actually up.

84

In order to do this, you can write in the Wagon section of your .eng file or .wag file (since the

pantograph may be on a wagon) this optional structure:

ORTSPantographs(

 Pantograph(<< This is going to be your first pantograph.

 Delay(5 s) << Example : a delay of 5 seconds

)

 Pantograph(

 … parameters for the second pantograph …

)

)

Other parameters will be added to this structure later, such as power limitations or speed

restrictions.

By default, the circuit breaker of the train closes as soon as power is available on the pantograph.

In real life, the circuit breaker does not close instantly, so you can add a delay with the optional

parameter ORTSCircuitBreakerClosingDelay().

The power-on sequence time delay can be adjusted by the optional ORTSPowerOnDelay() value

(for example : ORTSPowerOnDelay(5 s)) within the Engine section of the .eng file (value in

seconds). The same delay for auxiliary systems can be adjusted by the optional parameter

ORTSAuxPowerOnDelay().

A scripting interface is available in order to create a customized circuit breaker or a customized

power supply system (it will be useful later when the key bindings will be customizable for each

locomotive).

The power status is indicated by the “Electric power” value in the HUD view. The pantographs of

all locomotives in a consist are triggered by “Control Pantograph First” and “Control Pantograph

Second” commands (“P” and “Shift+P” by default). The status of the pantographs is indicated by

the “Pantographs” value in the HUD view.

85

8.4 Steam Locomotives

8.4.1 General Introduction to Steam Locomotives

8.4.1.1 Principles of Train Movement

Key Points to Remember:

 Steam locomotive tractive effort must be greater than the train resistance forces.

 Train resistance is impacted by the train itself, curves, gradients, tunnels, etc.

 Tractive effort reduces with speed, and will reach a point where it "equals" the train

resistance, and thus the train will not be able to go any faster.

 This point will vary as the train resistance varies due to changing track conditions.

 Theoretical tractive effort is determined by the boiler pressure, cylinder size, drive wheel

diameters, and will vary between locomotives.

 Low Factors of Adhesion will cause the locomotive’s driving wheels to slip.

Forces Impacting Train Movement

The steam locomotive is a heat engine which converts heat energy generated through the burning

of fuel, such as coal, into heat and ultimately steam. The steam is then used to do work by

injecting the steam into the cylinders to drive the wheels around and move the locomotive forward.

To understand how a train will move forward, it is necessary to understand the principal

mechanical forces acting on the train. The diagram below shows the two key forces affecting the

ability of a train to move.

The first force is the tractive effort produced by the locomotive, whilst the second force is the

resistance presented by the train. Whenever the tractive effort is greater than the train resistance

the train will continue to move forward; once the resistance exceeds the tractive effort, then the

86

train will start to slow down, and eventually will stop moving forward.

The sections below describe in more detail the forces of tractive effort and train resistance.

Train Resistance

The movement of the train is opposed by a number of different forces which are collectively

grouped together to form the “train resistance”.

The main resistive forces are as follows:

i) Journal or Bearing resistance (or friction)

ii) Air resistance

The above two values of resistance are modelled through the Davis formulas, and only apply on

straight level track.

iii) Gradient resistance – trains travelling up hills will experience greater resistive forces then

those operating on level track.

iv) Curve resistance – applies when the train is traveling around a curve, and will be impacted

by the curve radius, speed, and fixed wheel base of the rolling stock.

v) Tunnel resistance - applies when a train is travelling through a tunnel.

Tractive Effort

Tractive Effort is created by the action of the steam against the pistons, which, through the media

of rods, crossheads, etc., cause the wheels to revolve and the engine to advance.

Tractive Effort is a function of mean effective pressure of the steam cylinder and is expressed by

following formula for a simple locomotive. Geared and compound locomotives will have slightly

different formula.

TE = Cyl/2 x (M.E.P. x d2 x s) / D

Where:

Cyl = number of cylinders

TE = Tractive Effort (lbf)

M.E.P. = mean effective pressure of cylinder (psi)

D = diameter of cylinder (in)

S = stroke of cylinder piston (in)

D = diameter of drive wheels (in)

Theoretical Tractive Effort

To allow the comparison of different locomotives, as well as determining their relative pulling

ability, a theoretical approximate value of tractive effort is calculated using the boiler gauge

pressure and includes a factor to reduce the value of M.E.P.

Thus our formula from above becomes

87

TE = Cyl/2 x (0.85 x BP x d2 x s) / D

Where:

BP = Boiler Pressure (gauge pressure - psi)

0.85 – factor to account for losses in the engine, typically values between 0.7 and 0.85 were

used by different manufacturers and railway companies.

Factor of Adhesion

The factor of adhesion describes the likelihood of the locomotive slipping when force is applied to

the wheels and rails, and is the ratio of the starting Tractive Effort to the weight on the driving

wheels of the locomotive.

FoA = Wd / TE

Where:

FoA = Factor of Adhesion

TE = Tractive Effort (lbs)

Wd = Weight on Driving Wheels (lbs)

Typically the Factor of Adhesion should ideally be between 4.0 & 5.0 for steam locomotives.

Values below this range will typically result in slippage on the rail.

Indicated HorsePower (IHP)

Indicated Horsepower is the theoretical power produced by a steam locomotive.

The generally accepted formula for Indicated Horsepower is

I.H.P. = Cyl/2 x (M.E.P. x L x A x N) / 33000

Where:

IHP = Indicated Horsepower (hp)

Cyl = number of cylinders

M.E.P. = mean effective pressure of cylinder (psi)

L = stroke of cylinder piston (ft)

A = area of cylinder (sq in)

N = number of cylinder piston strokes per min (NB: two piston strokes for every wheel

revolution)

As shown in the diagram below, IHP increases with speed, until it reaches a maximum value. This

value is determined by the cylinder’s ability to maintain an efficient throughput of steam, as well as

for the boiler’s ability to maintain sufficient steam generation to match the steam usage by the

cylinders.

88

Hauling Capacity of Locomotives

Thus it can be seen that the hauling capacity is determined by the summation of the tractive effort

and the train resistance.

Different locomotives were designed to produce different values of tractive effort, and therefore the

loads that they were able to haul would be determined by the track conditions, principally the ruling

gradient for the section, and the load or train weight. Therefore most railway companies and

locomotive manufacturers developed load tables for the different locomotives depending upon

their theoretical tractive efforts.

The table below is a sample showing the hauling capacity of an American (4-4-0) locomotive from

the Baldwin Locomotive Company catalogue, listing the relative loads on level track and other

grades as the cylinder size, drive wheel diameter, and weight of the locomotive is varied.

Typically the ruling gradient is defined as the maximum uphill grade facing a train in a particular

section of the route, and this grade would typically determine the maximum permissible load that

the train could haul in this section. The permissible load would vary depending upon the direction

of travel of the train.

8.4.1.2 Elements of Steam Locomotive Operation

A steam locomotive is a very complex piece of machinery that has many component parts, each of

which will influence the performance of the locomotive in different ways. Even at the peak of its

development in the middle of the 20th century, the locomotive designer had at their disposal only a

89

series of factors and simple formulae to describe its performance. Once designed and built, the

performance of the locomotive was measured and adjusted by empirical means, i.e. by testing and

experimentation on the locomotive. Even locomotives within the same class could exhibit

differences in performance.

A simplified description of a steam locomotive is provided below to help understand some of the

key basics of its operation.

As indicated above, the steam locomotive is a heat engine which converts fuel (coal, wood, oil,

etc.) to heat; this is then used to do work by driving the pistons to turn the wheels. The operation

of a steam locomotive can be thought of in terms of the following broadly defined components:

 Boiler and Fire (Heat conversion)

 Cylinder (Work done)

Boiler and Fire (Heat conversion)

The amount of work that a locomotive can do will be determined by the amount of steam that can

be produced (evaporated) by the boiler.

Boiler steam production is typically dependent upon the Grate Area, and the Boiler Evaporation

Area.

Grate Area - the amount of heat energy released by the burning of the fuel is dependent upon the

size of the grate area, draught of air flowing across the grate to support fuel combustion, fuel

calorific value, and the amount of fuel that can be fed to the fire (a human fireman can only shovel

so much coal in an hour). Some locomotives may have had good sized grate areas, but were 'poor

steamers' because they had small draught capabilities.

Boiler Evaporation Area - consisted of the part of the firebox in contact with the boiler and the heat

tubes running through the boiler. This area determined the amount of heat that could be

transferred to the water in the boiler. As a rule of thumb a boiler could produce approximately 12-

15lbs/h of steam per sq. ft. of evaporation area.

Boiler Superheater Area - Typically modern steam locomotives are superheated, whereas older

locomotives used only saturated steam. Superheating is the process of putting more heat into the

steam without changing the pressure. This provided more energy in the steam and allowed the

locomotive to produce more work, but with a reduction in steam and fuel usage. In other words a

superheated locomotive tended to be more efficient then a saturated locomotive.

Cylinder (Work done)

To drive the locomotive forward, steam was injected into the cylinder which pushed the piston

backwards and forwards, and this in turn rotated the drive wheels of the locomotive. Typically the

larger the drive wheels, the faster the locomotive was able to travel.

The faster the locomotive travelled the more steam that was needed to drive the cylinders. The

steam able to be produced by the boiler was typically limited to a finite value depending upon the

design of the boiler. In addition the ability to inject and exhaust steam from the cylinder also

tended to reach finite limits as well. These factors typically combined to place limits on the power

of a locomotive depending upon the design factors used.

90

8.4.1.3 Locomotive Types

During the course of their development, many different types of locomotives were developed,

some of the more common categories are as follows:

 Simple - simple locomotives had only a single expansion cycle in the cylinder

 Compound - locomotives had multiple steam expansion cycles and typically had a high

and low pressure cylinder.

 Saturated - steam was heated to only just above the boiling point of water.

 Superheated - steam was heated well above the boiling point of water, and therefore

was able to generate more work in the locomotive.

 Geared - locomotives were geared to increase the tractive effort produced by the

locomotive, this however reduced the speed of operation of the locomotive.

Superheated Locomotives

In the early 1900s, superheaters were fitted to some locomotives. As the name was implied a

superheater was designed to raise the steam temperature well above the normal saturated steam

temperature. This had a number of benefits for locomotive engineers in that it eliminated

condensation of the steam in the cylinder, thus reducing the amount of steam required to produce

the same amount of work in the cylinders. This resulted in reduced water and coal consumption in

the locomotive, and generally improved the efficiency of the locomotive.

Superheating was achieved by installing a superheater element that effectively increased the

heating area of the locomotive.

Geared Locomotives

In industrial type railways, such as those used in the logging industry, spurs to coal mines were

often built to very cheap standards. As a consequence, depending upon the terrain, they were

often laid with sharp curves and steep gradients compared to normal "main line standards".

Typical "main line" rod type locomotives couldn't be used on these lines due to their long fixed

wheelbase (coupled wheels) and their relatively low tractive effort was no match for the steep

gradients. Thus geared locomotives found their niche in railway practice.

Geared locomotives typically used bogie wheelsets, which allowed the rigid wheelbase to be

reduced compared to that of rod type locomotives, thus allowing the negotiation of tight curves. In

addition the gearing allowed an increase of their tractive effort to handle the steeper gradients

compared to main line tracks.

Whilst the gearing allowed more tractive effort to be produced, it also meant that the "maximum"

piston speed was reached at a lower track speed.

As suggested above, the maximum track speed would depend upon loads and track conditions.

As these types of lines were lightly laid, excessive speeds could result in derailments, etc.

91

The three principal types of geared locomotives used were:

 Shay Locomotives

 Climax

 Heisler

8.4.2 Steam Locomotive Operation

To successfully drive a steam locomotive it is necessary to consider the performance of the

following elements:

 Boiler and Fire (Heat conversion)

 Cylinder (Work done)

For more details on these elements, refer to the “Elements of Steam Locomotive Operation”

Summary of Driving Tips

 Wherever possible, when running normally, have the regulator at 100%, and use the

reverser to adjust steam usage and speed.

 Avoid jerky movements when starting or running the locomotive, thus reducing the

chances of breaking couplers.

 When starting always have the reverser fully wound up, and open the regulator slowly

and smoothly, without slipping the wheels.

8.4.2.1 Open Rails Steam Functionality (Fireman)

The Open Rails Steam locomotive functionality provides two operational options:

1. Automatic Fireman (Computer Controlled):

In Automatic or Computer Controlled Fireman mode all locomotive firing and boiler management

is done by Open Rails, leaving the player to concentrate on driving the locomotive. Only the

basic controls such as the regulator and throttle are available to the player.

2. Manual Fireman:

In Manual Fireman mode all locomotive firing and boiler management must be done by the

player. All of the boiler management and firing controls, such as blower, injector, fuel rate, are

available to the player, and can be adjusted accordingly.

A full listing of the keyboard controls for use when in manual mode is provided on the Keyboard

tab of the Open Rails Options panel.

Use the keys Crtl+F to switch between Manual and Automatic firing modes.

92

8.4.2.2 Hot or Cold Start

The locomotive can be started either in a hot or cold mode. Hot mode simulates a locomotive

which has a full head of steam and is ready for duty.

Cold mode simulates a locomotive that has only just had the fire raised, and still needs to build up

to full boiler pressure, before having full power available.

This function can be selected through the Open Rails options menu on the Simulation tab.

8.4.2.3 Main Steam Locomotive Controls

This section will describe the control and management of the steam locomotive based upon the

assumption that the Automatic fireman is engaged. The following controls are those typically used

by the driver in this mode of operation:

Cylinder Cocks - allows water condensation to be exhausted from the cylinders.

(Open Rails Keys: toggle C)

Regulator - controls the pressure of the steam injected into the cylinders.

(Open Rails Keys: D = increase, A = decrease)

Reverser - controls the valve gear and when the steam is "cutoff". Typically it is expressed as a

fraction of the cylinder stroke.

(Open Rails Keys: W = increase, S = decrease). Continued operation of the W or S key will

eventually reverse the direction of travel for the locomotive.

Brake - controls the operation of the brakes.

(Open Rails Keys: ‘ = increase, ; = decrease)

Recommended Option Settings

For added realism of the performance of the steam locomotive, it is suggested that the following

settings be considered for selection in the Open Rails options menu:

 Break couplers

 Curve speed dependent

 Curve resistance speed

 Hot start

 Tunnel resistance dependent

NB: Refer to the relevant sections of the manual for more detailed description of these functions.

Locomotive Starting

Open the cylinder cocks. They are to remain open until the engine has traversed a distance of

about an average train length, consistent with safety.

The locomotive should always be started in full gear (reverser up as high as possible), according

to the direction of travel, and kept there for the first few turns of the driving wheels, before

adjusting the reverser.

After ensuring that all brakes are released, open the regulator sufficiently to move the train, care

should be exercised to prevent slipping; do not open the regulator too much before the locomotive

93

has gathered speed. Severe slipping causes excessive wear and tear on the locomotive,

disturbance of the fire bed and blanketing of the spark arrestor. If slipping does occur, the

regulator should be closed as appropriate, and if necessary sand applied.

Also, when starting, a slow even increase of power will allow the couplers all along the train to be

gradually extended, and therefore reduce the risk of coupler breakages.

Locomotive Running

Theoretically, when running, the regulator should always be fully open and the speed of the

locomotive controlled, as desired, by the reverser. For economical use of steam, it is also

desirable to operate at the lowest cut-off values as possible, so the reverser should be operated at

low values, especially running at high speeds.

When running a steam locomotive keep an eye on the following key parameters in the Heads up

Display (HUD – F5) as they will give the driver an indication of the current status and performance

of the locomotive with regard to the heat conversion (Boiler and Fire) and work done (Cylinder)

processes. Also bear in mind the above driving tips.

 Direction – indicates the setting on the reverser and the direction of travel. The value is

in per cent, so for example a value of 50 indicates that the cylinder is cutting off at 0.5 of

the stroke.

 Throttle – indicates the setting of the regulator in per cent.

 Steam usage – these values represent the current steam usage per hour.

 Boiler Pressure – this should be maintained close to the maximum working pressure of

the locomotive.

 Boiler water level – indicates the level of water in the boiler. Under operation in

Automatic Fireman mode, the fireman should manage this.

 Fuel levels– indicate the coal and water levels of the locomotive.

For information on the other parameters, such as the brakes, refer to the relevant sections in the

manual.

For the driver of the locomotive the first two steam parameters are the key ones to focus on, as

operating the locomotive for extended periods of time with steam usage in excess of the steam

generation value will result in declining boiler pressure. If this is allowed to continue the locomotive

94

will ultimately lose boiler pressure, and will no longer be able to continue to pull its load.

Steam usage will increase with the speed of the locomotive, so the driver will need to adjust the

regulator, reverser, and speed of the locomotive to ensure that optimal steam pressure is

maintained. However, a point will finally be reached where the locomotive cannot go any faster

without the steam usage exceeding the steam generation. This point determines the maximum

speed of the locomotive and will vary depending upon load and track conditions

8.4.2.4 Steam Locomotive Carriage Steam Heat Modelling

Overview

In the early days of steam, passenger carriages were heated by fire burnt in stoves within the

carriage, but this type of heating proved to be dangerous, as on a number of occasions the

carriages actually caught fire and burnt.

A number of alternative heating systems were adopted as a safer replacement.

The Open Rails Model is based upon a direct steam model, ie one that has steam pipes installed

in each carriage, and pumps steam into each car to raise the internal temperature in each car.

The heat model in each car is represented by Figure 1 below. The key parameters influencing the

operation of the model are the values of tc, to, tp, which represent the temperature within the

carriage, ambient temperature outside the carriage, and the temperature of the steam pipe due to

steam passing through it.

As shown in the figure the heat model has a number of different elements as follows:

i. Internal heat mass – the air mass in the carriage (represented by cloud) is heated to

temperature that is comfortable to the passengers. The energy required to maintain

the temperature will be determined the volume of the air in the carriage

ii. Heat Loss – Transmission – over time heat will be lost through the walls, roof, and

floors of the carriage (represented by outgoing orange arrows), this heat loss will

reduce the temperature of the internal air mass.

iii. Heat Loss – Infiltration – also over time as carriage doors are opened and closed at

station stops, some cooler air will enter the carriage (represented by ingoing blue

arrows), and reduce the temperature of the internal air mass.

iv. Steam Heating – to offset the above heat losses, steam was piped through each of

the carriages (represented by circular red arrows). Depending upon the heat input

from the steam pipe, the temperature would be balanced by offsetting the steam

heating against the heat losses.

95

Figure 1 - Heat Model for Passenger Car

Carriage Heating Implementation in Open Rails:

Currently, carriage steam heating is only available on steam locomotives

To enable steam heating to work in Open Rails the following parameter must be included in the

engine section of the steam locomotive ENG File:

MaxSteamHeatingPressure(x)

Where: x = maximum steam pressure in the heating pipe - should not exceed 100psi

If the above parameter is added to the locomotive, then an extra line will appear in the extended

HUD to show the temperature in the train, and the steam heating pipe pressure, etc.

Steam heating will only work if there are passenger cars attached to the locomotive.

Warning messages will be displayed if the temperature inside the carriage goes outside of the

limits of 10 - 15.5 C.

The player can control the train temperature by using the following controls:

Alt-U - increase steam pipe pressure (and hence train temperature)

Alt-D - decrease steam pipe pressure (and hence train temperature)

It should be noted that the impact of steam heating will vary depending upon the season, length of

train, etc.

.

96

8.4.3 Steam Locomotives – Physics Parameters for Optimal Operation

 for content developers:

8.4.3.1 Required Input ENG and WAG File Parameters

The OR Steam Locomotive Model (SLM) should work with default MSTS files; however optimal performance will only be achieved if the

following settings are applied within the ENG file. The following list only describes the parameters associated with the SLM, other

parameters such as brakes, lights, etc. still need to be included in the file. As always, make sure that you keep a backup of the

original MSTS file.

Open Rails has been designed to do most of the calculations for the modeler, and typically only the key parameters are required to be

included in the ENG or WAG file. The parameters shown in the “Locomotive performance Adjustments” section should be included only

where a specific performance outcome is required, since “default” parameters should provide a satisfactory result.

When creating and adjusting ENG or WAG files, a series of tests should be undertaken to ensure that the performance matches the actual

real-world locomotive as closely as possible. For further information on testing, as well as some suggested test tools, go to this site.

NB: These parameters are subject to change as Open Rails continues to develop.

Notes – Existing – means a parameter in original MSTS or added through MSTS BIN
 New – means added as part of OR development
Possible Locomotive Reference Info:

i) Steam Locomotive Data - http://orion.math.iastate.edu/jdhsmith/term/slindex.htm
ii) Example Wiki Locomotive Data - http://en.wikipedia.org/wiki/SR_Merchant_Navy_class

Testing Resources for Open Rails Steam Locomotives – http://coalstonewcastle.com.au/physics/

Parameter
ENG
or

WAG
Description

Recommended
Input Units

Suggested
settings

New or
Existing

Typical Examples

General Information

ORTSSteamLocomotiveType (x) ENG Describes the type
of locomotive

Text Simple,
Compound,

Geared

New ORTSSteamLocomotiveType (Simple)

WheelRadius (x) ENG
Radius of drive

wheels
Distance – m, in As per loco specs Existing

WheelRadius (0.648m)
WheelRadius (36in)

http://coalstonewcastle.com.au/physics
http://orion.math.iastate.edu/jdhsmith/term/slindex.htm
http://en.wikipedia.org/wiki/SR_Merchant_Navy_class
http://coalstonewcastle.com.au/physics/

97

Parameter
ENG
or

WAG
Description

Recommended
Input Units

Suggested
settings

New or
Existing

Typical Examples

maxSteamHeatingPressure (x) ENG

Max Pressure in
steam heating

system for
passenger
carriages

Pressure – psi,
kPa

As per loco specs.
NB: Normally <

100psi.
Existing maxSteamHeatingPressure(80)

Boiler Parameters

ORTSSteamBoilerType (x) ENG Describes the type
of boiler

Text Saturated,
Superheated

New ORTSSteamBoilerType (Saturated)

BoilerVolume (x) ENG Volume of boiler
Volume – cu ft,

cu m

This parameter is
not overly critical,

and where an
actual value is not

available, use
EvapArea / 8.3 as
an approximation

Existing
BoilerVolume ("220*(ft^3)")
BoilerVolume ("110*(m^3)")

ORTSEvaporationArea (x) ENG
Boiler evaporation

area.
Area – sq ft, sq

m
As per loco specs New

ORTSEvaporationArea ("2198*(ft^2)")
ORTSEvaporationArea ("194*(m^2)")

MaxBoilerPressure (x) ENG
Max boiler

working pressure
(Gauge pressure)

Pressure – psi,
kPa

As per loco specs Existing
MaxBoilerPressure (200psi)
MaxBoilerPressure (200kPa)

ORTSSuperheatArea (x) ENG
Superheating
heating area

Area – sq ft, sq
m

As per loco specs New
ORTSSuperheatArea ("2198*(ft^2)")
ORTSSuperheatArea ("194*(m^2)")

Locomotive Tender Info

MaxTenderWaterMass (x) ENG Water in tender

Mass – lbs, kg
1 uk gal = 10lb

1 us gal =
8.34lb

As per loco specs Existing
MaxTenderWaterMass (36500lb)
MaxTenderWaterMass (16000kg)

MaxTenderCoalMass (x) ENG Coal in tender Mass – lbs, kg As per loco specs Existing
MaxTenderCoalMass (13440lb)
MaxTenderCoalMass (6000kg)

Fire

ORTSGrateArea (x) ENG
Locomotive fire

grate area
Area – sq ft, sq

m
As per loco specs New

ORTSGrateArea ("2198*(ft^2)")
ORTSGrateArea ("194*(m^2)")

ORTSFuelCalorific (x)

ENG
Calorific value of

fuel
Energy Density
– btu/lb, kj/kg

Internet search –
for coal use a

New
ORTSFuelCalorific (13700btu/lb)
ORTSFuelCalorific (33400kj/kg)

98

Parameter
ENG
or

WAG
Description

Recommended
Input Units

Suggested
settings

New or
Existing

Typical Examples

default value of
13700 btu/lb

ORTSSteamFiremanMaxPossibleFiringRate(x) ENG

Maximum fuel
rate that fireman
can shovel in an

hour

Mass – lbs, kg

Use following as
defaults:

UK – 3000lb/h
US – 5000lb/h
Aus – 4200lb/h

New –
alternate
value to

MSTS

ORTSSteamFiremanMaxPossibleFiringRate
 (4200lb/h)

ORTSSteamFiremanMaxPossibleFiringRate
 (2000kg/h)

SteamFiremanIsMechanicalStoker (x) ENG

Indicates that the
locomotive has a

mechanical
stoker, and hence
a large rate of coal

feed.

Factor
0 = no stoker

1 = stoker
Existing SteamFiremanIsMechanicalStoker (1.0)

Steam Cylinder

NumCylinders (x) ENG
Number of steam

cylinders
Factor As per loco specs Existing NumCylinders (2)

CylinderStroke (x) ENG
Length of cylinder

stroke
Distance – m, in As per loco specs Existing

CylinderStroke (26in)
CylinderStroke (0.8m)

CylinderDiameter (x) ENG
Diameter of

cylinder
Distance – m, in As per loco specs Existing

CylinderDiameter (21in)
CylinderDiameter (0.6m)

LPNumCylinders (x) ENG

Number of steam
LP cylinders
(Compound

locomotive only)

Factor As per loco specs Existing LPNumCylinders (2)

LPCylinderStroke (x) ENG

Length of LP
cylinder stroke

(Compound
locomotive only)

Distance – m, in As per loco specs Existing
LPCylinderStroke (26in)
LPCylinderStroke (0.8m)

LPCylinderDiameter (x) ENG

Diameter of LP
cylinder

(Compound
locomotive only)

Distance – m, in As per loco specs Existing
LPCylinderDiameter (21in)
LPCylinderDiameter (0.6m)

Friction

ORTSDavis_A (x) WAG Davis A – journal N, lbf As per loco specs, New ORTSDavis_A (502.8N)

99

Parameter
ENG
or

WAG
Description

Recommended
Input Units

Suggested
settings

New or
Existing

Typical Examples

or roller bearing +
mechanical

friction

use FCalc to
calculate

ORTSDavis_A (502.8lb)

ORTSDavis_B (x) WAG
Davis A – flange

friction
Nm/s, lbf/mph

As per loco specs,
use FCalc to

calculate
New

ORTSDavis_B (1.5465Nm/s)
ORTSDavis_B (1.5465lbf/mph)

ORTSDavis_C (x) WAG
Davis A – air

resistance friction
Nm/s^2,

lbf/mph^2

As per loco specs,
use FCalc to

calculate
New

ORTSDavis_C (1.43Nm/s^2)
ORTSDavis_C (1.43lbf/mph^2)

ORTSBearingType (x) WAG Bearing type.
Roller, Friction,

Low

Roller – defaults
to friction
bearing.

New
ORTSBearingType (Roller)

NB: leave out if not known, or a friction
bearing

ORTSDriveWheelWeight (x) ENG
Total weight on
the locomotive
driving wheels

Mass As per loco specs New
ORTSDriveWheelWeight (2.12t)
NB: can be left out if not known

Curve Speed Limit

ORTSUnbalancedSuperElevation (x) WAG

Determines the
amount of Cant

Deficiency
(Unbalanced

SuperElevation)
applied to
carriage

Distance
As per vehicle

specs
New

ORTSUnbalancedSuperElevation (3in)
ORTSUnbalancedSuperElevation

(0.075m)
NB: can be left out if not known

ORTSTrackGauge(x)
WAG Track gauge Distance

As per railway
specs

New

ORTSTrackGauge(4ft 8.5in)

ORTSTrackGauge(4.708ft)

ORTSTrackGauge(1.435m)

NB: can be left out if not known

100

Parameter
ENG
or

WAG
Description

Recommended
Input Units

Suggested
settings

New or
Existing

Typical Examples

CentreOfGravity (x, y, z)
WAG

Defines the centre
of gravity of a
locomotive or

wagon

Distance
As per vehicle

specs
Existing

CentreOfGravity (0.0m, 1.8m, 0.0m)

CentreOfGravity (0.0ft, 5.0ft, 0.0ft)

NB: can be left out if not known

Curve Friction

ORTSRigidWheelBase (x)
WAG

Rigid wheel base
of vehicle

Distance
As per vehicle

specs

ORTSRigidWheelBase (5ft 6in)
ORTSRigidWheelBase (3.37m)
NB: can be left out if not known

Locomotive Gearing (Only required if locomotive is geared)

ORTSSteamGearRatio (a, b)
ENG Ratio of gears Value As per loco specs New

ORTSSteamGearRatio (2.55, 0.0)

ORTSSteamMaxGearPistonRate (x)
ENG

Max speed of
piston in ft/min

Value only As per loco specs New
ORTSSteamMaxGearPistonRate (650)

ORTSSteamGearType (x)
ENG

Indicates whether
the locomotive

has fixed gearing
or selectable

gearing

Fixed, Select As per loco specs New
ORTSSteamGearType (Fixed)

Locomotive Performance Adjustments (Optional only - to be used by experienced modellers)

ORTSBoilerEvaporationRate (x)
ENG

Multiplication
factor for
adjusting

maximum boiler
steam output

Factor
As per loco specs
(between 10 -15)

New

ORTSBoilerEavporationRate (15.0)

 NB: leave out if not used

ORTSBurnRate (x, y) ENG

Tabular input
describing the

rate of coal
combusted to the

rate of steam
generation

X – steam
produced in
lbs, y – coal

combusted in
Kg, series of x &

y values

As per loco specs (New NB: leave out if not used

101

Parameter
ENG
or

WAG
Description

Recommended
Input Units

Suggested
settings

New or
Existing

Typical Examples

ORTSCylinderEfficiencyRate (x) ENG

Multiplication
factor for steam
cylinder (force)

output

Factor
As per loco specs

(unlimited)
New

ORTSCylinderEfficiencyRate (1.0)
NB: leave out if not used

ORTSBoilerEfficiency (x, y) ENG

Tabular input
describing the

efficiency of the
boiler against coal

combustion

x – coal burning
rate per hour
(lbs/ft2), y –
boiler
efficiency,
series of x & y
values.

As per loco specs New NB: leave out if not used

ORTSCylinderExhaustOpen (x) ENG
Point at which the
cylinder exhaust

port opens
Factor

As per loco specs
(between 0.1 –

0.95)
New

ORTSCylinderExhaustOpen (10.0)
NB: leave out if not used

ORTSCylinderPortOpening (x) ENG
Size of cylinder
port opening

Factor
As per loco specs
(between 0.05 –

0.12)
New

ORTSCylinderPortOpening (0.085)
NB: leave out if not used

ORTSCylinderInitialPressureDrop (x, y) ENG

Tabular input
describing the
initial pressure

drop as
locomotive speed

increases

x – wheel
speed in rpm, y
- pressure drop
factor, series of

x & y values.

As per loco specs New NB: leave out if not used

ORTSCylinderBackPressure (x, y) ENG

Tabular input
describing the

Increase in back
pressure as
locomotive
indicated

horsepower
increases

x – indicated
HP, y –

backpressure
(atm psi), series
of x & y values.

As per loco specs New
ORTSCylinderBackPressure (10.0)

NB: leave out if not used

102

8.5 Engines – Multiple Units in Same Consist or AI Engines

In an OR player train one locomotive is controlled by the player, while the other units are

controlled by default by the train's MU (multiple unit) signals for braking and throttle position, etc.

The player-controlled locomotive generates the MU signals which are passed along to every unit

in the train. For AI trains, the AI software directly generates the MU signals, i.e. there is no player-

controlled locomotive. In this way, all engines use the same physics code for power and friction.

 This software model will ensure that non-player controlled engines will behave exactly the

same way as player controlled ones.

8.6 Open Rails Braking

Open Rails software has implemented its own braking physics in the current release. It is based on

the Westinghouse 26C and 26F air brake and controller system. Open Rails braking will parse the

type of braking from the .eng file to determine if the braking physics uses passenger or freight

standards, self-lapping or not. This is controlled within the Options menu as shown in General

Options above.

Selecting Graduated Release Air Brakes in Menu > Options allows partial release of the brakes.

Some 26C brake valves have a cut-off valve that has three positions: passenger, freight and cut-

out. Checked is equivalent to passenger standard and unchecked is equivalent to freight standard.

The Graduated Release Air Brakes option controls two different features. If the train brake

controller has a self-lapping notch and the Graduated Release Air Brakes box is checked, then

the amount of brake pressure can be adjusted up or down by changing the control in this notch. If

the Graduated Release Air Brakes option is not checked, then the brakes can only be increased

in this notch and one of the release positions is required to release the brakes.

Another capability controlled by the Graduated Release Air Brakes checkbox is the behavior of

the brakes on each car in the train. If the Graduated Release Air Brakes box is checked, then the

brake cylinder pressure is regulated to keep it proportional to the difference between the

emergency reservoir pressure and the brake pipe pressure. If the Graduated Release Air Brakes

box is not checked and the brake pipe pressure rises above the auxiliary reservoir pressure, then

the brake cylinder pressure is released completely at a rate determined by the retainer setting.

The following brake types are implemented in OR:

 Vacuum single

 Air single-pipe

 Air twin-pipe

 EP (Electro-pneumatic)

 Single-transfer-pipe (air and vacuum)

The operation of air single-pipe brakes is described in general below.

The auxiliary reservoir needs to be charged by the brake pipe and, depending on the WAG file

parameters setting, this can delay the brake release. When the Graduated Release Air Brakes

box is not checked, the auxiliary reservoir is also charged by the emergency reservoir (until both

103

are equal and then both are charged from the pipe). When the Graduated Release Air Brakes

box is checked, the auxiliary reservoir is only charged from the brake pipe. The Open Rails

software implements it this way because the emergency reservoir is used as the source of the

reference pressure for regulating the brake cylinder pressure.

The end result is that you will get a slower release when the Graduated Release Air Brakes box

is checked. This should not be an issue with two pipe air brake systems because the second pipe

can be the source of air for charging the auxiliary reservoirs.

Open Rails software has modeled most of this graduated release car brake behavior based on the

26F control valve, but this valve is designed for use on locomotives. The valve uses a control

reservoir to maintain the reference pressure and Open Rails software simply replaced the control

reservoir with the emergency reservoir.

Increasing the Brake Pipe Charging Rate (PSI/Second) value controls the charging rate.

Increasing the value will reduce the time required to recharge the train; while decreasing the

value will slow the charging rate. However, this might be limited by the train brake controller

parameter settings in the ENG file. The brake pipe pressure cannot go up faster than that of

the equalization reservoir.

The default value, 21, should cause the recharge time from a full set to be about 1 minute for every

12 cars. If the Brake Pipe Charging Rate (PSI/Second) value is set to 1000, the pipe pressure

gradient features will be disabled and will also disable some but not all of the other new brake

features.

Brake system charging time depends on the train length as it should, but at the moment there is no

modeling of main reservoirs and compressors.

8.6.1 Using the F5 HUD Expanded Braking Information

This helps users of Open Rails to understand the status of braking within the game and assists in

realistically coupling and uncoupling cars. Open Rails braking physics is more realistic than MSTS,

as it models the connection, charging and exhaust of brake lines.

When coupling to a static consist, note that the brake line for the newly added cars normally does

not have any pressure. This is because the train brake line/hose has not yet been connected. The

last columns of each line shows the condition of the air brake hose connections of each unit in the

consist.

The columns under “AnglCock” describe the state of the “Angle Cock”, a manually operated valve

in each of the brake hoses of a car: A is the cock at the front, B is the cock at the rear of the car.

The symbol “+” indicates that the cock is open and the symbol “-“ that it is closed. The column

headed by “T” indicates if the hose on the locomotive or car is interconnected: “T” means that

there is no connection, “I” means it is connected to the air pressure line. If the angle cocks of two

consecutive cars are B+ and A+ respectively, they will pass the main air hose pressure between

the two cars. In this example note that the locomotive air brake lines start with A- (closed) and end

104

with B- (closed) before the air hoses are connected to the newly coupled cars. All of the newly

coupled cars in this example have their angle cocks open, including those at the ends, so their

brake pressures are zero. This will be reported as “Emergency” state.

8.6.1.1 Coupling Cars

Also note that, immediately after coupling, you may also find that the handbrakes of the newly

added cars have their handbrakes set to 100% (see column headed “Handbrk”). Pressing “Shift+;”

(Shift plus semicolon in English keyboards) will release all the handbrakes on the consist as

shown below. Pressing “Shift+'” (Shift plus apostrophe on English keyboards) will set all of the

handbrakes. Cars without handbrakes will not have an entry in the handbrake column.

If the newly coupled cars are to be moved without using their air brakes and parked nearby, the

brake pressure in their air hose may be left at zero: i.e. their hoses are not connected to the train’s

air hose. Before the cars are uncoupled in their new location, their handbrakes should be set. The

cars will continue to report “State Emergency” while coupled to the consist because their BC value

is zero; they will not have any braking. The locomotive brakes must be used for braking. If the cars

are uncoupled while in motion, they will continue coasting.

If the brakes of the newly connected cars are to be controlled by the train’s air pressure as part of

the consist, their hoses must be joined together and to the train’s air hose and their angle cocks

set correctly. Pressing the Backslash key (\) (in English keyboards; please check the keyboard

assignments for other keyboards) connects the brake hoses between all cars that have been

coupled to the engine and sets the intermediate angle cocks to permit the air pressure to gradually

approach the same pressure in the entire hose. This models the operations performed by the train

crew. The HUD display changes to show the new condition of the brake hose connections and

angle cocks:

All of the hoses are now connected; only the angle cocks on the lead locomotive and the last car

are closed as indicated by the “-”. The rest of the cocks are open (“+”) and the air hoses are joined

together (all “I”) to connect to the air supply on the lead locomotive.

Upon connection of the hoses of the new cars, recharging of the train brake line commences.

Open Rails uses a default charging rate of about 1 minute per every 12 cars. The HUD display

may report that the consist is in “Emergency” state; this is because the air pressure dropped when

the empty car brake systems were connected. Ultimately the brake pressures reach their stable

values:

105

If you don’t want to wait for the train brake line to charge, pressing Shift+/ (in English keyboards)

executes “Brakes Initialize” which will immediately fully charge the train brakes line to the final

state. However, this action is not prototypical and also does not allow control of the brake

retainers.

The state of the angle cocks, the hose connections and the air brake pressure of individual

coupled cars can be manipulated by using the F9 Train Operations Monitor, described here. This

will permit more realistic shunting of cars in freight yards.

8.6.1.2 Uncoupling Cars

When uncoupling cars from a consist, using the F5 HUD Expanded Brake Display in conjunction

with the F9 Train Operations Monitor display allows the player to set the handbrakes on the cars to

be uncoupled, and to uncouple them without losing the air pressure in the remaining cars. Before

uncoupling, close the angle cock at the rear of the car ahead of the first car to be uncoupled so

that the air pressure in the remaining consist is not lost when the air hoses to the uncoupled cars

are disconnected. If this procedure is not followed, the train braking system will go into

“Emergency” state and will require pressing the \ (backslash) key to connect the air hoses

correctly and then waiting for the brake pressure to stabilize again.

8.6.1.3 Setting Brake Retainers

If a long consist is to be taken down a long or steep grade the operator may choose to set the

“Brake Retainers” on some or all of the cars to create a fixed braking force by those cars when the

train brakes are released. (This requires that the retainer capability of the cars be enabled; either

by the menu option “Retainer valve on all cars”, or by the inclusion of an appropriate keyword in

the car’s .wag file.) The train must be fully stopped and the main brakes must be applied so that

there is adequate pressure in the brake cylinders. Pressing Shift+] controls how many cars in the

consist have their retainers set, and the pressure value that is retained when the train brakes are

released. The settings are described in Brake Retainers below. Pressing Shift+[cancels the

settings and exhausts all of the air from the brake cylinders when the brakes are released. The F5

display shows the symbol “RV ZZ” for the state of the retainer valve in all cars, where ZZ is: “EX”

for “Exhaust” or “LP” or “HP”. When the system brakes are released and there are no retainers

set, the air in the brake cylinders in the cars is normally released to the air. The BC pressure for

the cars with retainers set will not fall below the specified value. In order to change the retainer

settings, the train must be fully stopped. A sample F5 view with 50% LP is shown below:

106

8.6.2 Dynamic Brakes

Open Rails software supports dynamic braking for engines. To increase the Dynamic brakes press

Period (.) and Comma (,) to decrease them. Dynamic brakes are usually off at train startup (this

can be overridden by the related MSTS setting in the .eng file), the throttle works and there is no

value shown in the dynamic brake line in the HUD. To turn on dynamic brakes set the throttle to

zero and then press Period. Pressing Period successively increases the Dynamic braking forces. If

the value n in the MSTS parameter DynamicBrakesDelayTimeBeforeEngaging (n) is greater than

zero, the dynamic brake will engage only after n seconds. The throttle will not work when the

Dynamic brakes are on.

The Dynamic brake force as a function of control setting and speed can be defined in a

DynamicBrakeForceCurves table that works like the MaxTractiveForceCurves table (see here). If

there is no DynamicBrakeForceCurves defined in the ENG file, than one is created based on the

MSTS parameter values.

8.6.3 Native Open Rails Braking Parameters

Open Rails has implemented additional specific braking parameters to deliver realism in braking

performance in the simulation.

Following are a list of specific OR parameters and their default values. The default values are used

in place of MSTS braking parameters; however, two MSTS parameters are used for the release

state: MaxAuxilaryChargingRate and EmergencyResChargingRate.

wagon(brakepipevolume - Volume of car's brake pipe in cubic feet (default .5).

 This is dependent on the train length calculated from the ENG to the last car in the train. This

aggregate factor is used to approximate the effects of train length on other factors.

 Strictly speaking this value should depend on the car length, but the Open Rails Development

team doesn’t believe it is worth the extra complication or CPU time that would be needed to

calculate it in real time. We will let the community customize this effect by adjusting the brake

servicetimefactor instead, but the Open Rails Development team doesn’t believe this is worth the

effort by the user for the added realism.

engine(mainreschargingrate - Rate of main reservoir pressure change in PSI per second when the
compressor is on (default .4).

engine(enginebrakereleaserate - Rate of engine brake pressure decrease in PSI per second

(default 12.5).

engine(enginebrakeapplicationrate - Rate of engine brake pressure increase in PSI per second

(default 12.5).

engine(brakepipechargingrate - Rate of lead engine brake pipe pressure increase in PSI per second
(default 21).

engine(brakeservicetimefactor - Time in seconds for lead engine brake pipe pressure to drop to about 1/3
for service application (default 1.009).

engine(brakeemergencytimefactor - Time in seconds for lead engine brake pipe pressure to drop to
about 1/3 in emergency (default .1).

engine(brakepipetimefactor - Time in seconds for a difference in pipe pressure between adjacent
cars to equalize to about 1/3 (default .003).

107

8.6.4 Brake Retainers

The retainers of a car will only be available if either the General Option “Retainer valve on all cars”

is checked, or the car’s .wag file contains a retainer valve declaration. To declare a retainer the

line “BrakeEquipmentType ()” in the .wag file must include either the item “Retainer_4_Position”

or the item “Retainer_3_Position”. A 4 position retainer includes four states: exhaust, low pressure

(10 psi), high pressure (20 psi), and slow direct (gradual drop to zero). A 3 position retainer does

not include the low pressure position. The use and display of the retainers is described in

Extended HUD for Brake Information.

The setting of the retained pressure and the number of retainers is controlled using the Ctrl+[and

Ctrl+] keys (Ctrl plus the left and right square bracket ([and]) keys on an English keyboard). The

Ctrl+[key will reset the retainer on all cars in the consist to exhaust (the default position). Each

time the Ctrl+] key is pressed the retainer settings are changed in a defined sequence. First the

fraction of the cars set at a low pressure is selected (25%, 50% and then 100% of the cars), then

the fraction of the cars at a high pressure is selected instead, then the fraction at slow direct. For

the 25% setting the retainer is set on every fourth car starting at the rear of the train, 50% sets

every other car and 100% sets every car. These changes can only be made when the train is

stopped. When the retainer is set to exhaust, the ENG file release rate value is used, otherwise the

pressures and release rates are hard coded based on some AB brake documentation used by the

Open Rails development team.

8.6.5 Emergency Brake Application Key

The “Backspace” key is used, as in MSTS, to apply the train brakes in an emergency situation

without requiring operation of the train brake lever. However in OR moving the brake lever back to

the Release position will only cause OR to report “Apply Emergency Brake Push Button”. The

Backspace key must be pressed again to cancel the emergency application, then normal

operation can be resumed. When the button is active, the F5 HUD will display “Emergency Brake

Push Button” in the “Train Brake” line.

8.7 Dynamically Evolving Tractive Force

The Open Rails development team has been experimenting with max/continuous tractive force,

where it can be dynamically altered during game play using the ORTSMaxTractiveForceCurves

parameter as shown earlier. The parameters were based on the Handbook of Railway Vehicle

Dynamics. This says the increased traction motor heat increase resistance which decreases

current and tractive force. We used a moving average of the actual tractive force to approximate

the heat in the motors. Tractive force is allowed to be at the maximum per the ENG file, if the

average heat calculation is near zero. If the average is near the continuous rating than the tractive

force is de-rated to the continuous rating. There is a parameter called ContinuousForceTimeFactor

that roughly controls the time over which the tractive force is averaged. The default is 1,800

seconds.

108

8.8 Curve Resistance - Theory

8.8.1 Introduction

When a train travels around a curve, due to the track resisting the direction of travel (i.e. the train

wants to continue in a straight line), it experiences increased resistance as it is “pushed” around

the curve. Over the years there has been much discussion about how to accurately calculate

curve friction. The calculation methodology presented (and used in OR) is meant to be

representative of the impacts that curve friction will have on rolling stock performance.

8.8.2 Factors Impacting Curve Friction

A number of factors impact upon the value of resistance that the curve presents to the trains

movement, as follows:

 Curve radius – the smaller the curve radius the higher the higher the resistance to the

train

 Rolling Stock Rigid Wheelbase – the longer the rigid wheelbase of the vehicle, the

higher the resistance to the train. Modern bogie stock tends to have shorter rigid

wheelbase values and is not as bad as the older style 4 wheel wagons.

 Speed – the speed of the train around the curve will impact upon the value of

resistance, typically above and below the equilibrium speed (i.e. when all the wheels of

the rolling stock are perfectly aligned between the tracks). See the section below

“Impact of superelevation”.

The impact of wind resistance on curve friction is ignored.

8.8.3 Impact of Rigid Wheelbase

The length of the rigid wheelbase of rolling stock will impact the value of curve resistance.

Typically rolling stock with longer rigid wheelbases will experience a higher degree of “rubbing” or

frictional resistance on tight curves, compared to stock with smaller wheelbases.

Steam locomotives usually created the biggest problem in regard to this as their drive wheels

tended to be in a single rigid wheelbase as shown in Fig 1. In some instances on routes with

tighter curve the “inside” wheels of the locomotive were sometimes made flangeless to allow them

to “float” across the track head. Articulated locomotives, such as Shays, tended to have their drive

wheels grouped in bogies similar to diesel locomotives and hence were favoured for routes with

tight curves.

The value used for the rigid wheelbase is shown as W in Fig 1.

(Diagram Source - The Baldwin Locomotive Works - Locomotive Data - 1944)

Figure 1 - Example of Rigid Wheelbase in steam locomotive

109

8.8.4 Impact of Super Elevation

On any curve whose outer rail is super-elevated there is, for any car, one speed of operation at

which the car trucks have no more tendency to run toward either rail than they have on straight

track, where both rail-heads are at the same level (known as the equilibrium speed). At lower

speeds the trucks tend constantly to run down against the inside rail of the curve, and thereby

increase the flange friction; whilst at higher speeds they run toward the outer rail, with the same

effect. This may be made clearer by reference to Fig. 2, which represents the forces which operate

on a car at its centre of gravity. With the car at rest on the curve there is a component of the

weight W which tends to move the car down toward the inner rail. When the car moves along the

track centrifugal force Fc comes into play and the car action is controlled by the force Fr which is

the resultant of W and Fc. The force Fr likewise has a component which, still tends to move the

car toward the inner rail. This tendency persists until, with increasing speed, the value of Fc

becomes great enough to cause the line of operation of Fr to coincide with the centre line of the

track perpendicular to the plane of the rails. At this equilibrium speed there is no longer any

tendency of the trucks to run toward either rail. If the speed be still further increased, the

component of Fr rises again, but now on the opposite side of the centre line of the track and is of

opposite sense, causing the trucks to tend to move toward the outer instead of the inner rail, and

thereby reviving the extra flange friction. It should be emphasized that the flange friction arising

from the play of the forces here under discussion is distinct from and in excess of the flange

friction which arises from the action of the flanges in forcing the truck to follow the track curvature.

This excess being a variable element of curve resistance, we may expect to find that curve

resistance reaches a minimum value when this excess reduces to zero, that is, when the car

speed reaches the critical value referred to. This critical speed depends only on the super-

elevation, the track gauge, and the radius of the track curvature. The resulting variation of curve

resistance with speed is indicated in Fig 3.

Figure 2 - Description of forces on rolling stock transitioning a curve

110

8.8.5 Calculation of Curve Resistance

R=WF(D+L)2r

Where R = Curve resistance, W = vehicle weight, F = Coefficient of Friction, u = 0.5 for dry,

smooth steel-to-steel, wet rail 0.1 - 0.3, D = track gauge, L = Rigid wheelbase, r = curve

radius.

Source: The Modern locomotive by C. Edgar Allen - 1912

8.8.6 Calculation of Curve Speed Impact

The above value represents the least value amount of resistance, which occurs at the equilibrium

speed, and as described above will increase as the train speed increases and decreases from the

equilibrium speed. This concept is shown pictorially in the following graph. Open Rails uses the

following formula to model the speed impact on curve resistance:

SpeedFactor=ABS((EquilibriumSpeed−TrainSpeed)(EquilibriumSpeed)∗ResistanceFactor@start

 Figure 3 - Generalisation of Variation of Curve Resistance With Speed

8.8.7 Further background reading

http://en.wikipedia.org/wiki/Curve_resistance_(railroad)

8.9 Curve Resistance - Application in OR

Open Rails models this function, and the user may elect to specify the known wheelbase

parameters, or the above “standard” default values will be used. OR calculates the equilibrium

speed in the speed curve module, however it is not necessary to select both of these functions in

the simulator options TAB. Only select the function desired. By studying the “Forces Information”

table in the HUD, you will be able to observe the change in curve resistance as the speed, curve

radius, etc. vary.

http://en.wikipedia.org/wiki/Curve_resistance_(railroad)

111

8.9.1 OR Parameter Values

Typical OR parameter values may be entered in the Wagon section of the .wag or .eng file, and

are formatted as below.

ORTSRigidWheelBase (3in)

ORTSTrackGauge (4ft 8.5in) (also used in curve speed module)

8.9.2 OR Default Values

The above values can be entered into the relevant files, or alternatively if they are not present,

then OR will use the default values described below.

Rigid Wheelbase – as a default OR uses the figures shown above in the “Typical Rigid Wheelbase

Values” section. The starting curve resistance value has been assumed to be 200%, and has been

built into the speed impact curves. OR calculates the curve resistance based upon the actual

wheelbases provided by the player or the appropriate defaults. It will use this as the value at

“Equilibrium Speed”, and then depending upon the actual calculated equilibrium speed (from the

speed limit module) it will factor the resistance up as appropriate to the current train speed.

Steam locomotive wheelbase approximation – the following approximation is used to determine

the default value for the fixed wheelbase of a steam locomotive.

WheelBase=1.25∗(axles−1)∗DrvWheelDiameter

8.9.3 Typical Rigid Wheelbase Values

The following values are used as defaults where actual values are not provided by the player.

Rolling Stock Type Typical value

Freight Bogie type stock (2 wheel bogie) 5’ 6” (1.6764m)

Passenger Bogie type stock (2 wheel

bogie)

8’ (2.4384m)

Passenger Bogie type stock (3 wheel

bogie)

12’ (3.6576m)

Typical 4 wheel rigid wagon 11’ 6” (3.5052m)

Typical 6 wheel rigid wagon 12’ (3.6576m)

Tender (6 wheel) 14’ 3” (4.3434m)

Diesel, Electric Locomotives Similar to passenger stock

Steam locomotives Dependent on # of drive wheels, Can be up to

20'+, e.g. large 2-10-0 locomotives

Modern publications suggest an allowance of approximately 0.8 lb. per ton (US) per degree of

curvature for standard gauge tracks. At very slow speeds, say 1 or 2 mph, the curve resistance is

closer to 1.0 lb. (or 0.05% up grade) per ton per degree of curve.

112

8.10 Super Elevation (Curve Speed Limit) . Theory

8.10.1 Introduction

When a train rounds a curve, it tends to travel in a straight direction and the track must resist this

movement, and force the train to move around the curve. The opposing movement of the train and

the track result in a number of different forces being in play.

8.10.2 19th & 20th Century Vs Modern Day Railway Design

In the early days of railway construction financial considerations were a big factor in route design

and selection. Given that the speed of competing transport, such as horses and water transport

was not very great, speed was not seen as a major factor in the design process. However as

railway transportation became a more vital need for society, the need to increase the speed of

trains became more and more important. This led to many improvements in railway practices and

engineering. A number of factors, such as the design of the rolling stock, as well as the track

design, ultimately influence the maximum speed of a train. Today's high speed railway routes are

specifically designed for the speeds expected of the rolling stock.

8.10.3 Centrifugal Force

Railway locomotives, wagons and carriages, hereafter referred to as rolling stock, when rounding

a curve come under the influence of centrifugal force. Centrifugal force is commonly defined as:

 The apparent force that is felt by an object moving in a curved path that acts outwardly

away from the centre of rotation.

 An outward force on a body rotating about an axis, assumed equal and opposite to the

centripetal force and postulated to account for the phenomena seen by an observer in

the rotating body.

For this article the use of the phrase centrifugal force shall be understood to be an apparent force

as defined above.

8.10.4 Effect of Centrifugal Force

When rolling stock rounds a curve, if the rails of the track are at the same elevation (i.e. the two

tracks are at the same level) the combination of centrifugal force Fc and the weight of the rolling

stock W will produce a resulting force Fr that does not coincide with the centre line of track, thus

producing a downward force on the outside rail of the curve that is greater than the downward

force on the inside rail (Refer to Figure 1). The greater the velocity and the smaller the radius of

the curve (some railways have curve radius as low as 100m), the farther the resulting force Fr will

move away from the centre line of track. Equilibrium velocity was the velocity at which a train could

negotiate a curve with the rolling stock weight equally distributed across all the wheels.

If the position of the resulting force Fr approaches the outside rail, then the rolling stock is at risk of

“falling” off the track or overturning. The following drawing, illustrates the basic concept described.

Lateral displacement of the centre of gravity permitted by the suspension system of the rolling

stock is not illustrated.

113

Figure 1 - Forces at work when a train rounds a curve

8.10.5 Use of Super Elevation

In order to counteract the effect of centrifugal force Fc the outside rail of the curve may be

elevated above the inside rail, effectively moving the centre of gravity of the rolling stock laterally

toward the inside rail.

This procedure is generally referred to as super elevation. If the combination of lateral

displacement of the centre of gravity provided by the super elevation, velocity of the rolling stock

and radius of curve is such that resulting force Fr becomes centred between and perpendicular to

a line across the running rails the downward pressure on the outside and inside rails of the curve

will be the same. The super elevation that produces this condition for a given velocity and radius of

curve is known as the balanced or equilibrium elevation.

Figure 2 - This illustrates the above concept.

8.10.6 Limitation of Super Elevation in Mixed Passenger & Freight Routes

Typical early railway operation resulted in rolling stock being operated at less than equilibrium

114

velocity (all wheels equally sharing the rolling stock weight), or coming to a complete stop on

curves. Under such circumstances excess super elevation may lead to a downward force sufficient

to damage the inside rail of the curve, or cause derailment of rolling stock toward the centre of the

curve when draft force is applied to a train. Routine operation of loaded freight trains at low

velocity on a curve superelevated to permit operation of higher velocity passenger trains will result

in excess wear of the inside rail of the curve by the freight trains.

Thus on these types of routes, super elevation is generally limited to no more than 6 inches.

8.10.7 Limitation of Super Elevation in High Speed Passenger Routes

Modern high speed passenger routes do not carry slower speed trains, nor expect trains to stop

on curves, so it is possible to operate these routes with higher track super elevation values.

Curves on these types of route are also designed with a relatively gentle radius, and are typically

in excess of 2000m (2km) or 7000m (7km) depending on the speed limit of the route.

Parameters France Germany Spain Korea Japan

Speed (km/h) 300/350 300 350 300/350 350

Horizontal curve radius

(m)

10000

(10km)

7000 (7km) 7000 (7km) 7000

(7km)

4000 (4km)

Super elevation (mm) 180 170 150 130 180

Max Grade (mm/m) 35 40 12.5 25 15

Cant Gradient (mm/s) 50 34.7 32 N/A N/A

Min Vertical radius (m) 16000

(16km)

14000

(14km)

24000

(24km)

N/A 10000

(10km)

Table 1 - Curve Parameters for High Speed Operations (Railway Track Engineering by

J. S. Mundrey)

8.10.8 Maximum Curve Velocity

The maximum velocity on a curve may exceed the equilibrium velocity, but must be limited to

provide a margin of safety before overturning velocity is reached or a downward force sufficient to

damage the outside rail of the curve is developed. This velocity is generally referred to as

maximum safe velocity or safe speed. Although operation at maximum safe velocity will avoid

overturning of rolling stock or rail damage, a passenger riding in a conventional passenger car will

experience centrifugal force perceived as a tendency to slide laterally on their seat, creating an

uncomfortable sensation of instability. To avoid passenger discomfort, the maximum velocity on a

curve is therefore limited to what is generally referred to as maximum comfortable velocity or

comfortable speed. Operating experience with conventional passenger cars has led to the

generally accepted practice, circa 1980, of designating the maximum velocity for a given curve to

be equal to the result for the calculation of equilibrium velocity with an extra amount added to the

actual super elevation that will be applied to the curve. This is often referred to as unbalanced

super elevation or cant deficiency. Tilt trains have been introduced to allow faster train operation

on tracks not originally designed for “high speed” operation, as well as high speed railway

115

operation. The tilting of the passenger cab allows greater values of unbalanced super elevation to

be used.

8.10.9 Limitation of Velocity on Curved Track at Zero Cross Level

The concept of maximum comfortable velocity may also be used to determine the maximum

velocity at which rolling stock is permitted to round curved track without super elevation and

maintained at zero cross level. The lead curve of a turnout located between the heel of the switch

and the toe of the frog is an example of curved track that is generally not super elevated. Other

similar locations would include yard tracks and industrial tracks where the increased velocity

capability made possible by super elevation is not required. In such circumstances the maximum

comfortable velocity for a given curve may also be the maximum velocity permitted on tangent

track adjoining the curve.

8.10.10 Height of Centre of Gravity

Operation on a curve at equilibrium velocity results in the centre of gravity of the rolling stock

coinciding with a point on a line that is perpendicular to a line across the running rails and the

origin of which is midway between the rails. Under this condition the height of the centre of gravity

is of no consequence as the resulting force Fr coincides with the perpendicular line described

above. When rolling stock stops on a super elevated curve or rounds a curve under any condition

of non-equilibrium the resulting force Fr will not coincide with the perpendicular line previously

described and the height of the centre of gravity then becomes significant in determining the

location of the resulting force Fr relative to the centre line of the track. The elasticity of the

suspension system of rolling stock under conditions of non-equilibrium will introduce a roll element

that affects the horizontal displacement of the centre of gravity and that must also be considered

when determining the location of the resulting force Fr.

8.10.11 Calculation of Curve Velocity

The generic formula for calculating the various curve velocities is as follows:

 V=EgrG−−−−√

Where: E = Ea (track super elevation) + Ec (unbalanced super elevation)

g = acceleration due to gravity

r = radius of curve

G = track gauge

8.10.12 Typical Super Elevation Values & Speed Impact - Mixed Passenger &
Freight Routes

The values quoted below are “typical” but may vary from country to country.

Track super elevation typically will not be more than 6 inches (150mm). Naturally, depending upon

the radius of the curve, speed restrictions may apply.

Normally unbalanced super elevation is typically restricted to 3 inches (75mm), and is usually only

allowed for passenger stock.

Tilt trains may have values of up to 12 inches (305mm).

116

8.10.13 Typical Super Elevation Values & Speed Impact - High Speed Passenger
Routes

Cant D

(SuperElevation)

(mm)

Cant deficiency (Unbalanced

SuperElevation)

I (mm)

CEN (draft) – Tilting trains 180-200 300

Czech Rep. – Tilting trains 150 270

France – Tilting trains 180 260

Germany – Tilting trains 180 300

Italy – Tilting trains 160 275

Norway – Tilting trains 150 280

Spain – Tilting trains

(equivalent for standard

gauge)

160

(139)

210

(182)

Sweden – Tilting trains 150 245

UK – Tilting trains 180 300

Table 2 - Super Elevation limits (source - Tracks for tilting trains - A study within the Fast And

Comfortable Trains (FACT) project by B. Kufver, R. Persson)

8.11 Super Elevation (Curve Speed Limit) Application in OR

Open Rails implements this function, and has “standard” default values applied. The user may

elect to specify some of the standard parameters used in the above formula.

By increasing the durability in the CON file, the sensitivity, or speed at which a curve speed

warning will be flagged, can be changed.

A value of 1.0 indicates unity, any value above 1.0 will increase the value by a relevant factor. For

example, 1.5 will increase the warning speed by a factor of 1.5x.

8.11.1 OR Super Elevation Parameters

Typical OR parameters can be entered in the Wagon section of the .wag or .eng file, and are

formatted as below.

ORTSUnbalancedSuperElevation (3in)

ORTSTrackGauge(4ft 8.5in)

117

8.11.2 OR Super Elevation Default Values

The above values can be entered into the relevant files, or alternatively OR will default to the

following functionality.

OR will initially use the speed limit value from the route’s .trk file to determine whether the route is

a conventional mixed freight and passenger route or a high speed route.

Speed limit < 200km/h (125mph) – Mixed Freight and Pass route

Speed limit > 200km/h (125mph) – High speed passenger route

“Default” values of tracksuperelevation will be applied based upon the above classifications.

Track gauge will default to the standard value of 4’ 8.5” (1435mm).

Unbalancedsuperelevation (Cant Deficiency) will be determined from the value entered by the

user, or will default to the following values:

 Conventional Freight – 0” (0mm)

 Conventional Passenger – 3” (75mm)

 Engines & tenders – 6” (150mm)

Tilting trains require the addition of the relevant unbalancedsuperelevation information to the

relevant rolling stock files.

118

8.12 Tunnel Friction -Theory

8.12.1 Introduction

When a train travels through a tunnel it experiences increased resistance to the forward

movement.

Over the years there has been much discussion about how to accurately calculate tunnel

resistance. The calculation methodology presented (and used in OR) is meant to provide an

indicative representation of the impacts that tunnel resistance will have on rolling stock

performance.

8.12.2 Factors Impacting Tunnel Friction

In general, the train aerodynamics are related to aerodynamic drag, pressure variations inside the

train, train-induced flows, cross-wind effects, ground effects, pressure waves inside the tunnel,

impulse waves at the exit of tunnel, noise and vibration, etc. The aerodynamic drag is dependent

on the cross-sectional area of the train body, train length, the shape of train fore- and after-bodies,

the surface roughness of train body, and geographical conditions around the traveling train. The

train-induced flows can influence passengers on a subway platform and is also associated with the

cross-sectional area of the train body, the train length, the shape of train fore- and after-bodies,

surface roughness of train body, etc.

A high speed train entering a tunnel generates a compression wave at the entry portal that moves

at the speed of sound in front of the train. The friction of the displaced air with the tunnel wall

produces a pressure gradient and, as a consequence, a rise in pressure in front of the train. On

reaching the exit portal of the tunnel, the compression wave is reflected back as an expansion

wave but part of it exits the tunnel and radiates outside as a micro-pressure wave. This wave

could cause a sonic boom that may lead to structural vibration and noise pollution in the

surrounding environment. The entry of the tail of the train into the tunnel produces an expansion

wave that moves through the annulus between the train and the tunnel. When the expansion

pressure wave reaches the entry portal, it is reflected towards the interior of the tunnel as a

compression wave. These compression and expansion waves propagate backwards and forwards

along the tunnel and experience further reflections when meeting with the nose and tail of the train

or reaching the entry and exit portals of the tunnel until they eventually dissipate completely.

The presence of this system of pressure waves in a tunnel affects the design and operation of

trains, and they are a source of energy losses, noise, vibrations and aural discomfort for

passengers.

These problems are even worse when two or more trains are in a tunnel at the same time. Aural

comfort is one of the major factors determining the area of new tunnels or the maximum train

speed in existing tunnels.

8.12.3 Importance of Tunnel Profile

119

As described above, a train travelling through a tunnel will create a bow wave of air movement in

front of it, which is similar to a “piston” effect. The magnitude and impact of this effect will

principally be determined by the tunnel profile, train profile and speed.

Typical tunnel profiles are shown in the diagrams below.

As can be seen from these diagrams the smaller the tunnel cross sectional area compared to the

train cross sectional area, the less air that can “escape” around the train, and hence the greater

the resistance experienced by the train. Thus it can be understood that a single train in a double

track tunnel will experience less resistance then a single train in a single track tunnel.

8.12.4 Calculation of Tunnel Resistance

Wt =

Ft – tunnel cross-sectional area (sq m) Ftr – train cross-sectional area sq m)
ɣ - density of air (= 1.2 kg/m3) Rt – tunnel perimeter (m)
Ltr – length of train (m) Lt – length of tunnel (m)
V – train velocity (m/s) P - locomotive mass (tonne)
G - train mass (tonne) Wt – additional aerodynamic drag in tunnel (N/kN)

Source: Reasonable compensation coefficient of maximum gradient in long railway tunnels by Sirong YI*, Liangtao

NIE, Yanheng CHEN, Fangfang QIN

8.13 Tunnel Friction - Application in OR

for content developers:

120

To enable this calculation capability it is necessary to select the “Tunnel dependent resistance”

option on the Open Rails Menu. The implication of tunnel resistance is designed to model the

relative impact, and does not take into account multiple trains in the tunnel at the same time.

Tunnel resistance values can be seen in the Train Forces HUD.

The default tunnel profile is determined by the route speed recorded in the TRK file.

8.13.1 OR Parameters

The following parameters maybe included in the TRK file to overwrite standard default values used

by Open Rails.

ORTSSingleTunnelArea (x) – Cross section area of single track tunnel – units area

ORTSSingleTunnelPerimeter (x) - Perimeter of single track tunnel – units distance

ORTSDoubleTunnelArea (x) - Cross section area of double track tunnel – units area

ORTSDoubleTunnelPerimeter (x) - Perimeter of double track tunnel – units distance

To insert these values in the .trk file, it is suggested that you add them just prior to the last

parenthesis. You may also use an “Include” file method, described here.

8.13.2 OR Defaults

Open Rails uses the following standard defaults, unless overridden by values included in the TRK

file.

i) Tunnel Perimeter

Speed 1 track 2 track

<160km/h 21.3 31m

160 < 200km/h 25.0m 34.5m

200 < 250km/h 28.0m 35.0m

250 < 350km/h 32.0m 37.5m

ii) Tunnel Cross Sectional Area

Speed 1 track 2 track

<120km/h 27.0m 45.0m

<160km/h 42.0m2 76.0m2

200km/h 50.0m2 80.0m2

250km/h 58.0m2 90.0m2

350km/h 70.0m2 100.0m2

121

8.14 OR-Specific “Include” Files for Modifying MSTS File Parameters

8.14.1 Modifications to .eng and .wag Files

In the preceding paragraphs many references have been made to OR-specific parameters and

tables to be included in .eng and .wag files. MSTS is in general quite tolerant if it finds unknown

parameters and even blocks within .eng and .wag files, and continues running normally. However

this way of operating is not encouraged by the OR team. Instead, a cleaner approach, as

described here, has been implemented.

Within the trainset folder containing the .eng and .wag files to be upgraded, create a subfolder

named “OpenRails”. Only OR will read files from this folder. Within this subfolder a text file named

xxxx.eng or xxxx.wag, where xxxx.eng or xxxx.wag is the name of the original file, must be

created.

This new file may contain either:

 all of the information included in the original file (using modified parts where desired)

plus the OR-specific parts if any, or:

 at its beginning only an “include” reference to the original file, followed by the modified

parts and the OR-specific parts. This does not apply to the Name() statement and the

Loco Description Information, where in any case the data in the base .eng file is

retained.

An example of an OR-specific bc13ge70tonner.eng file to be placed into the OpenRails subfolder

that uses the second possibility is as follows:

include (..\bc13ge70tonner.eng)

Wagon (

 MaxReleaseRate (2.17)

 MaxApplicationRate (3.37)

 MaxAuxilaryChargingRate (.4)

 EmergencyResChargingRate (.4)

 BrakePipeVolume (.4)

 ORTSUnbalancedSuperElevation (3in)

Engine (

 AirBrakeMainresvolume (16)

 MainResChargingRate (.5)

 BrakePipeChargingRate (21)

 EngineBrakeReleaseRate (12.5)

 EngineBrakeApplicationRate (12.5)

 BrakePipeTimeFactor (.00446)

 BrakeServiceTimeFactor (1.46)

 BrakeEmergencyTimeFactor (.15)

 ORTSMaxTractiveForceCurves (

 0 (

 0 0 50 0)

 .125 (

 0 23125

 .3 23125

 1 6984

 2 3492

 5 1397

 10 698

 20 349

 50 140)

 .25 (

122

 0 46250

 .61 46250

 1 27940

 2 13969

 5 5588

 10 2794

 20 1397

 50 559)

 .375 (

 0 69375

 .91 69375

 2 31430

 5 12572

 10 6287

 20 3143

 50 1257)

 .5 (

 0 92500

 1.21 92500

 5 22350

 10 11175

 20 5588

 50 2235)

 .625 (

 0 115625

 1.51 115625

 5 34922

 10 17461

 20 8730

 50 3492)

 .75 (

 0 138750

 1.82 138750

 5 50288

 10 25144

 20 12572

 50 5029)

 .875 (

 0 161875

 2.12 161875

 5 68447

 10 34223

 20 17112

 50 6845)

 1 (

 0 185000

 2.42 185000

 5 89400

 10 44700

 20 22350

 50 8940)

)

)

)

123

The ORTSMaxTractiveForceCurves are formed by blocks of pairs of parameters representing

speed in metres per second and tractive force in Newtons; these blocks are each related to the

value of the throttle setting present at the top of each block. For intermediate values of the speed

an interpolated value is computed to get the tractive force, and the same method applies for

intermediate values of the throttle.

If the parameter that is modified for OR is located within the a named (i.e. bracketed) block in the

original file, then in the OpenRails file it must be included in a matching bracketed block. For

instance, it is not possible to replace only a part of the Lights() block. It must be replaced in its

entirety. For example, to use a different Cabview(), it must be enclosed in an Engine block:

Engine (BNSF4773

 CabView (dash9OR.cvf)

)

This is also required in the case of certain Brake parameters; to correctly manage reinitialization of

brake parameters, the entire block containing them must be present in the .eng file in the

OpenRails folder.

This use of the “Include” command can be extended to apply to sections of groups of .wag or .eng

files that the user wishes to replace by a specific block of data – the parameters can be provided

by a text file located outside the usual MSTS folders; e.g. brake parameters.

8.14.2 Modifications to .trk Files

This “Include” method is also applicable to the .trk file in the root folder of a route. For example,

OR and MSTS process the position of trees close to the track differently for certain routes. This

may result in trees appearing in the path of trains in OR. An OR-specifc parameter can be added

to the .trk file of the route to eliminate this. Alternatively, the original .trk file can be left unmodified,

and a new .trk file inserted into an OpenRails folder in the root folder of the route. This .trk file will

contain:

include (../Surfliner2.trk)

 ORTSUserPreferenceForestClearDistance (2)

Where the parameter represents a minimum distance in metres from the track for placement of

forests. Only OR will look in the Openrails folder.

8.15 Train Control System

The Train Control System is a system that ensures the safety of the train.

In MSTS, 4 TCS monitors were defined: the vigilance monitor, the overspeed monitor, the

emergency stop monitor and the AWS monitor. Open Rails does not support the AWS monitor.

In order to define the behavior of the monitors, you must add a group of parameters for each

monitor in the Engine section of the .eng file. These groups are called VigilanceMonitor(),

OverspeedMonitor(), EmergencyStopMonitor() and AWSMonitor().

In each group, you can define several parameters, which are described in the tables below.

124

Parameter Description
Recommended Input

Units
Typical Examples

General parameters

MonitoringDevice
MonitorTimeLimit(x)

Period of time elapsed before the
alarm is triggered or the penalty is

triggered
Time MonitoringDeviceMonitorTimeLimit(5s)

MonitoringDevice
AlarmTimeLimit(x)

Period for which the alarm sounds
prior to the penalty being applied

Time MonitoringDeviceAlarmTimeLimit(5s)

MonitoringDevice
PenaltyTimeLimit(x)

Period in seconds before the
penalty can be reset once

triggered
Time MonitoringDevicePenaltyTimeLimit(60s)

MonitoringDevice
CriticalLevel(x)

Speed at which monitor triggers Speed MonitoringDeviceCriticalLevel(200kph)

MonitoringDevice
ResetLevel(x)

Speed at which monitor resets Speed MonitoringDeviceResetLevel(5kph)

MonitoringDevice
AppliesFullBrake(x)

Sets whether full braking will be
applied

Boolean – 0 or 1 MonitoringDeviceAppliesFullBrake(0)

MonitoringDevice
AppliesEmergencyBrake(x)

Sets whether emergency braking
will be applied

Boolean – 0 or 1 MonitoringDeviceAppliesEmergencyBrake(1)

MonitoringDevice
AppliesCutsPower(x)

Sets whether the power will be cut
to the locomotive

Boolean – 0 or 1 MonitoringDeviceAppliesCutsPower(1)

125

Parameter Description
Recommended Input

Units
Typical Examples

MonitoringDevice
AppliesShutsDownEngine(x)

Sets whether the engine will be
shut down

Boolean – 0 or 1 MonitoringDeviceAppliesShutsDownEngine(0)

MonitoringDevice
ResetOnZeroSpeed(x)

Set whether the monitor resets
when the speed is null

Boolean – 0 or 1 MonitoringDeviceResetOnZeroSpeed(1)

MonitoringDevice
ResetOnResetButton(x)

Sets whether the monitor resets
when the reset button is pushed

Boolean – 0 or 1 MonitoringDeviceResetOnResetButton(0)

Specific parameters of the Overspeed Monitor

MonitoringDeviceAlarmTime
BeforeOverSpeed(x)

Period for which the alarm sounds
prior to the penalty being applied

Time MonitoringDeviceAlarmTimeBeforeOverSpeed(2s)

MonitoringDeviceTrigger
OnTrackOverspeedMargin(x)

Allowed overspeed Speed MonitoringDeviceTriggerOnTrackOverspeedMargin(5kph)

MonitoringDeviceTrigger
OnTrackOverspeed(x)

Maximum allowed speed Speed MonitoringDeviceTriggerOnTrackOverspeed(200kph)

126

9 Further Open Rails Rolling Stock Features

9.1 Train Engine Lights

OR supports the whole set of lights accepted by MSTS.

9.2 Tilting trains

OR supports tilting trains. A train tilts when its .con file name contains the “tilted” string: e.g.

ETR460_tilted.con.

9.3 Freight animations and pickups

9.3.1 OR implementation of MSTS freight animations and pickups

OR supports the freight animations as MSTS does (refueling of water, coal and diesel); when

refueling from a water column the animation of the column arm is supported; coal level in the

tender of the player loco decreases with consumption and increases when refueling.

The following pickup parameters are taken into consideration by OR for the MSTS animations:

 Pickup type

 Speed range

 Anim length.

The pickup animation frame rate is computed as the ratio between the number of frames defined

in the .s file, divided by the Anim length.

As in MSTS, Freight Animations are treated differently for tenders than for other vehicles.

Tenders

127

First numeric parameter: shape vertical position when full, relative to its origin, in meters

Second numeric parameter: shape vertical position when empty, relative to its origin, in meters.

Third numeric parameter: set to any positive value, or omitted, causes the shape to drop - see

below.

As long as the second parameter is lower than the first and the third parameter is either

omitted or has a non-zero value, the shape will drop, based on fuel consumption.

If the second parameter is not lower than the first, no movement will take place irrespective of

the 3rd parameter.

Other Vehicles

The numeric parameters are not used.

9.3.2 OR specific freight animations and pickups

9.3.2.1 General

In addition to the support of the MSTS freight animations, Open Rails provides a large extension

for freight animations (called “OR freightanims” below) and pickups.

Following are the native features Open Rails offers:

 two types of OR freightanims: continuous and static

 continuous OR freightanims are related to commodity loads, like coal, or stones: the load

level in the trainset varies accordingly to the amount of load

 static OR freightanims are in fact additional shapes that can be attached to the main

trainset shape

 both types of OR freightanims can be present in the same trainset, and can coexist with

original MSTS freight animations

 both types of OR freightanims can be related to locomotives or wagons

 more than one static OR freightanim can be present in a single trainset

 a wagon can be loaded with different commodities in different moments

 commodities can be loaded (in pickup stations) and unloaded (in unloading stations).

 wagons supporting continuous OR freightanims may be provided with a physical animation

that is triggered when unloading the wagon (like opening its bottom or fully rotating)

 OR freightanims are defined with an ORTSFreightAnims () block within the .wag or within

the wagon section of an .eng file

it is suggested that this block be defined within an include file as described here.

128

9.3.2.2 Continuous OR Freightanims

A description of this feature is best achieved by showing an example of an include file,(in this case

named AECX1636.wag and located in an Openrails subfolder within the wagon's folder). Note that

the first line of the file must be blank.

include (../AECX1636.wag)

Wagon (

ORTSFreightAnims

(

 MSTSFreightAnimEnabled (0)

 WagonEmptyWeight(22t)

 IsGondola(1)

 UnloadingStartDelay (7)

 FreightAnimContinuous

 (

 IntakePoint (0.0 6.0 FreightCoal)

 Shape(Coal.s)

 MaxHeight(0.3)

 MinHeight(-2.0)

 FreightWeightWhenFull(99t)

 FullAtStart(0)

)

 FreightAnimContinuous

 (

 IntakePoint (0.0 6.0 FuelCoal)

 Shape(Coal.s)

 MaxHeight(0.3)

 MinHeight(-2.0)

 FreightWeightWhenFull(99t)

 FullAtStart(0)

)

)

)

The ORTSFreightAnims block is composed by a set of general parameters followed by the

description of the OR freightanims.

Here below the general parameters are described.

 MSTSFreightAnimEnabled specifies if eventual MSTS freight animations within the

trainset are enabled (1) or not (0). This is useful if one wants to use a wagon where the

load is already shown with a (static) MSTS freight animation. In such a case the MSTS

freight animation must be disabled, to use the OR freightanim, that allows to modify the

vertical position of the freight shape.

 WagonEmptyWeight defines the mass of the wagon when empty. If the parameter is

missing, the weight of the load is not considered and the weight of the wagon is always

the value present in the root .eng file.

 IsGondola specifies (in case it is set to 1) if the load has to be rotated during unloading,

as happens in a gondola wagon. If absent the parameter is set to 0.

 UnloadingStartDelay specifies, if present, after how many seconds after pressing of the

T key the unloading starts. This is due to the fact that some seconds may be needed

before the wagon is set in a unloading layout. For example, a gondola must rotate more

than a certain number of degrees before the load begins to fall down.

129

There may be more than one FreightAnimContinuous subblock, one for each possible load type.

The parameters of the subblock are described below

 IntakePoint has the same format and the same meaning of the IntakePoint line within

the standard MSTS freight animations. Following types of loads are accepted:

FreightGrain, FreightCoal, FreightGravel, FreightSand, FuelWater, FuelCoal,

FuelDiesel. All these types of loads can be defined also for a pickup with the MSTS

Route editor.

 Shape defines the path of the shape to be displayed for the load

 MaxHeight defines the height of the shape over its 0 position at full load

 MinHeight defines the height of the shape over its 0 position at zero load

 FreightWeightWhenFull defines the mass of the freight when the wagon is full; the mass

of the wagon is computed by adding the mass of the empty wagon to the actual mass of

the freight

 FullAtStart defines wether the wagon is fully loaded (1) or is empty at game start; if

there are more continuous OR freightanims that have FullAtStart set to 1, only the first

one is considered.

As already outlined, the wagon may have a physical animation linked with the unload operation.

In a gondola this could be used to rotate the whole wagon, while in a hopper it could be used to

open the bottom of the wagon.

The base matrix within the wagon shape that has to be animated must have a name that starts

with ANIMATED_PARTS. There may be more than one, like ANIMATED_PARTS1,

ANIMATED_PARTS2 and so on. Its frame rate is fixed, and is 1 frame per second as for the other

types of OR trainset animations.

To define a pickup point as an unload point, its shape must be inserted in the .ref file of the route

as a pickup object . Here is an example of the .ref block:

Pickup (

 FileName (rotary_dump.s)

 Shadow (DYNAMIC)

 Class ("Track Objects")

 PickupType (_FUEL_COAL_)

 Description ("Rotary dumper")

)

When laying it down in the route with the MSTS Route Editor, its fill rate must be set to a negative

value.

Such a pickup (which in reality is an unloader) may be animated too. As for the MSTS standard

pickups, the pickup animation frame rate is computed as the ratio between the number of frames

defined in the .s file, divided by the Anim length.

By combining a physical animation of the wagon with an unloader animation effects like that of a

wagon within a rotary dumper may be achieved, as seen in the picture below.

130

Loading and unloading a trainset is triggered by pressing the T key when the trainset is at the

pickup's-unloader's location.

9.3.2.3 Static OR Freightanims

Only the two general parameters shown below are used for static OR freightanims:

 MSTSFreightAnimEnabled (0)

 WagonEmptyWeight(22t)

The subblock (to be inserted within the ORTSFreightAnims block) has the following format:

FreightAnimStatic

 (

 SubType(Default)

 Shape(xxshape.s)

 Offset(XOffset, YOffset, Zoffset)

 FreightWeight(weight)

 Flip()

)

-where the parameter “SubType” is not currently used. “Shape” is the path of the shape file.

 XOffset, YOffset and ZOffset are the offsets of the shape with respect to its zero position, and are

useful to place the shape precisely.

FreightWeight is the weight of the specific load. This weight is added to the WagonEmptyWeight

value (if present) to provide the total weight of the wagon. If more static OR freightanims are

present, each of their weights is added to define the total weight of the wagon.

Flip() , if present, flips the shape around its pivot point.

Because more static OR freightanims may be defined for a wagon, in the case of a container

wagon that is able to carry more than one container, even as a double stack, it is therefore

possible to use a static OR freightanim for each container, defining its position within the wagon.

131

9.4 Special Steam Effects for Steam Locomotives.

Steam exhausts on a steam locomotive can be modelled in OR by defining appropriate steam

effects in the SteamSpecialEffects section of the ENG file.

OR supports the following special steam effects:

 Steam cylinders (named CylindersFX and Cylinders2FX) – two effects are provided

which will represent the steam exhausted when the steam cylinder cocks are opened.

Two effects are provided to represent the steam exhausted at the front and rear of each

piston stroke. These effects will appear whenever the cylinder cocks are opened, and

there is sufficient steam pressure at the cylinder to cause the steam to exhaust, typically

the regulator is open (> 0%).

 Stack (named StackFX) – represents the smoke stack emissions. This effect will appear

all the time in different forms depending upon the firing and steaming conditions of the

locomotive.

 Compressor (named CompressorFX) – represents a steam leak from the air

compressor. Will only appear when the compressor is operating.

 Generator (named GeneratorFX) – represents the emission from the turbo-generator of

the locomotive. This effect operates continually. If a turbo-generator is not fitted to the

locomotive it is recommended that this effect is left out of the effects section which will

ensure that it is not displayed in OR.

 Safety valves (named SafetyValvesFX) – represents the discharge of the steam valves

if the maximum boiler pressure is exceeded. It will appear whenever the safety valve

operates.

 Whistle (named WhistleFX) – represents the steam discharge from the whistle.

 Injectors (named Injectors1FX and Injectors2FX) – represents the steam discharge from

the steam overflow pipe of the injectors. They will appear whenever the respective

injectors operate.

NB: If a steam effect is not defined in the SteamSpecialEffects section of the ENG file, then it will

not be displayed in the simulation.

Each effect is defined by inserting a code block into the ENG file similar to the one shown below:

CylindersFX

(

-1.0485 1.0 2.8

-1 0 0

0.1

)

The code block consists of the following elements:

 Effect name - as described above,

 Effect location on the locomotive (given as an x, y, z offset in metres from the origin of

the wagon shape)

 Effect direction of emission (given as a normal x, y and z)

 Effect nozzle width (in metres)

132

10 Open Rails Train Operation
Note that this document details behaviour while in single-player mode only. For multi-player mode,

different rules may apply.

10.1 Open Rails Activities

OR has the aim of running in a compatible way most of the activities written for MSTS.

Also, activities specifically for OR can be created, using the additional functions OR features, like

Extended AI Shunting. Discussions of the execution of some functions in ORTS and MSTS are

given here.

10.1.1 Player Paths, AI Paths, and How Switches Are Handled

If the player path requires a switch to be aligned both ways, the alignment that is the last on the

path is used. If an AI train crosses the player path before the player train gets there, the AI train will

leave the switches aligned for the main route (the default setting for most switches)

If you throw a switch to move into a siding, the switch at the far end of the siding is aligned to let

you leave when your train first occupies the siding. But after that it is not changed back to its

original setting. If the switch gets thrown the other way, you can leave the siding with the switch

aligned incorrectly. If you uncouple and re-couple to the train while it occupies the misaligned

switch, the rear end of the train will switch tracks.

10.2 Open Rails AI

10.2.1 Basic AI Functionality

 OR supports AI trains. The AI system is becoming more and more advanced with new

features.

 OR supports two distinct ways of controlling trains: it supports traditional activities in

compatibility with MSTS, and it also supports Timetable mode. Note that various options

and settings are sometimes limited to either activity or Timetable mode.

 AI trains can meet if both paths have passing sections defined at the same place, or if

their paths lead them to different tracks at the meet station.

 Waiting points and reverse points work. Reverse points can be used in both Activity and

Timetable modes, while waiting points can only be used in Activity mode.

 AI trains throw switches not lined properly before engaging them.

 In activity mode AI trains can perform shunting actions, provided the “Extended AI

shunting” option has been selected.

 Priorities: AI trains should start as scheduled as long as there is no other AI train

already on a conflict path.

10.3 Control Mode

133

Control Mode defines what interactions there are between the player and the control system, and

the level of control of the player on signals and switches.

There are two basic modes: Auto Mode and Manual Mode.

Use the Ctrl+M key to toggle between these modes.

10.3.1 Auto Mode

In Auto Mode the control system sets the train’s path and signals, and the player cannot change

the setting of the switches or request for signals at danger to clear. The train’s route is taken from

the path as defined in the Activity Editor or timetable definition, and the system will attempt to clear

the route ahead of the train according to the signalling rules and interaction with other trains.

No route is cleared in the reverse direction as the train is assumed not to run in reverse. Selecting

a reverse cab or changing the position of the reverser does not change the direction of the route.

In fact, the route will not be reversed other than at reversal points as defined in the train’s path. At

these reversal points, the route will reverse automatically as soon as the train stops.

If the train does accidentally run backward, e.g. due to slipping or setting back after overshooting a

platform, only safety checks are performed for the rear end of the train with respect to signals,

switch alignment, other trains and end of track. There is no check on speed limits behind the train.

Setting switches using the F8 window or G/Shift+G is not allowed. Setting switches using Alt+left

mouseclick is possible, but is not allowed for switches in the train’s path. However, any switches

set manually will automatically be reset by an approaching train according to that train’s path. So,

in Auto Mode the train cannot deviate from the defined path.

A request to clear a signal ahead of the train using the Tab command is only allowed when the

track ahead is occupied by another train which is at a stand-still, and when that track is in the

train’s route. A request to clear a signal which would lead the train off its route is not allowed. A

request to clear a signal behind the train using Shift+Tab is also not possible.

Auto Mode is intended for normal running under control of signals or traffic control. Shunting

moves can be performed if fully defined in the train’s path, using reversal points etc..

10.3.1.1 Details on Auto Mode: “Auto Signal” & “Auto Node”

There are two sub-modes to Auto Mode: Auto Signal and Auto Node.

Auto Signal is the normal mode on signalled routes. The train’s route is generally cleared from

signal to signal. Only in specifically defined situations can routes be cleared short of a signal as

detailed below.

Auto Node is set when the train has not encountered any signals yet, e.g. on unsignalled routes or

at the start of the route when there is no signal along the path of the train as far as it can be

cleared - e.g. in yards where the train starts but has no clear route yet to the first signal.

Auto Node can also be set if the route ahead cannot be fully cleared up to the next signal, and

partial clearing is allowed.

A number of sub-states are defined in Auto Node, depending on the reason that clearance is

terminated. In the list below, (A) indicates a subtype which can occur if no signal has yet been

encountered, (B) indicates a subtype when a route from a signal is partially cleared.

134

The following states are possible :

 (A) route ahead is clear to the maximum distance for which the track is cleared. The

control mode is set to Auto Node - Max Distance.

 (A) route ahead is blocked at a switch which is aligned for and occupied or reserved by

another train. Control mode is set to Auto Node - Misaligned Switch.

 (A)(B - only if signal allows access to occupied track, or after Tab command) route

ahead is occupied by a stationary train or train moving in the same direction. Control

mode is set to Auto Node - Train Ahead.

 Note that, for (A), it should not be possible that the route ahead is occupied by a train

moving in opposite direction - in that case, there should always be a misaligned switch

in the train’s path.

 For (B), a signal will never clear when the train ahead is moving in the opposite

direction, nor will the Tab request be granted.

 (A)(B) the train’s defined path terminates short of the next signal, or there is a reversal

point short of the next signal, and there is at least one switch between this point and the

next signal.

The control mode changes to Auto Node - End of Path.

Note that if there is no switch between the terminating or reversal point and the next

signal the route is automatically extended to the next signal.

 (A)(B) the train has passed the last signal before the end of the track, or the train has

reached the end of track without encountering any signal. The control mode changes to

Auto Node - End of Track.

Changes from Auto Node to Auto Signal and vice-versa are automatic and cannot be influenced

by the player.

10.3.2 Manual Mode

When it is required that a train move off its defined path, a player can switch his train to Manual

Mode. This will allow the player to set switches and request to clear signals off its path. However,

there are a number of restrictions when running a train in Manual Mode.

In Manual Mode, a route is cleared from the train in both directions, ahead of and behind the train.

The route is cleared to a shorter distance as compared to Auto Mode, and is never cleared

automatically beyond the first signal. If a train is moving and passes a signal in the opposite

direction, the route behind the train will automatically retract to that signal as that is now the next

signal in the reverse route. The same restrictions apply with respect to signals ahead when the

train is running in reverse.

The route orientation will not change whatever direction the train is running. It is fixed to the

orientation of the route as it was the moment the player switched to Manual Mode. So, changing to

a reverse-facing cab or changing the position of the loco's reverser does not change the direction

of the route orientation. This is not a limitation to the train’s behaviour, as routes are always

cleared in both directions. It does, however, affect the display of the F4 and F8 windows, as the

top/bottom direction of these windows is linked to the route direction and will therefore not change

if the train reverses. To assist the player in his orientation in which direction the train is moving, an

‘eye’ has been added to these displays symbolizing the direction of the cabview, and an ‘arrow’

has been added to symbolize the direction of the reverser.

135

The player can set all switches in the train’s path using the F8 window or the G/Shift+G keys. The

G key will set the first switch ahead of the train (as defined by the route direction), Shift+G sets the

switch behind the train. It is also possible to set switches as required using the Alt+Left Mouseclick

command. Switches can be set even if they are in the train’s path and a signal has been cleared

over that path. Switches, of course, can not be set if already set as part of a cleared route for

another train.

The following rules apply to the setting of switches :

 all switches will remain in the position in which they were set by the last train passing

over that switch. If no train has yet passed over the switch, it is in its default position.

 when in Manual Mode, trailing switches will not be automatically aligned for the

approaching player train, except :

 when a route is cleared through a signal while in Manual Mode, any trailing switches in

the train’s path up to the end of authority (e.g. next signal) will be aligned.

Note that in this case, trailing switches in the path cleared by the signal can no longer

be reset.

Signals which the train approaches will not be cleared automatically. The player must request

clearance of all signals encountered, by using the Tab or Shift+Tab keys.

The Tab key will clear the signal ahead of the train (according to the route direction), the Shift+Tab

key will clear the signal behind the train. Repeated use of (Shift+)Tab will clear the next signal

beyond the first cleared signal etc., but only up to the maximum clearing distance.

Signals will always clear on request except when the section immediately behind the signal is

already cleared for a train from the opposite direction. The normal route-setting limitations etc. are

ignored. The signal will only clear to the first available most restrictive aspect above Stop.

Note that, in contrast to the situation in Auto Mode, as the signal will clear even if the full route

behind the signal is not available, a cleared signal is no indication of the cleared distance beyond

that signal. It may be that the first switch beyond the signal is already cleared for another train.

Therefore, when in Manual Mode, use of the F4 window or the Dispatcher window to check on the

route availability is essential when running in an area with AI traffic.

When in Manual Mode, deadlock prevention processing is switched off. This is because the

changes in the train’s route and direction which are likely to occur in Manual Mode could

jeopardise the stability of the deadlock processing. So care should be taken when using Manual

Mode in an area with AI traffic, specifically on single track sections.

Switching from Auto Mode to Manual Mode can be performed with the train at a standstill or with

the train moving. The Ctrl+M key toggles between Auto Mode and Manual Mode. When switching

from Auto Mode to Manual Mode, all signals already cleared will be reset, and new routes are

cleared ahead of and behind the train for the maximum distance if possible, or up to the first

signal.

To switch back from Manual Mode to Auto Mode the front of the train must be on the path as

defined in the Activity Editor. If the path contains reversal points, the train must be in between the

same reversal points as it was when it switched to Manual Mode (i.e. same subpath).

If the train is moving in the direction as the path defines, switching back to Auto Mode can be done

while the train is moving. The rear of the train need not be on the defined path, only the front.

136

If the train is moving in the opposite direction, it must be at a standstill in order to switch back to

Auto Mode. If the orientation of the train’s route was somehow reversed (e.g. by moving through a

balloon-line or a Y-section) and differs from the direction in the defined path, both the front and

rear must be on the defined path. In this situation, the orientation will switch back to the direction

as defined in the path.

10.3.3 Out-of-Control Mode

This is a special mode. Normally, the player train should not be in this mode.

The out-of-control mode is activated when the player violates a security rule.

Such incidents are :

 when the player train passes a signal at danger (SPAD);

 when the player train passes over a misaligned switch;

 when the player train runs beyond the end of the authorised path.

These actions will place the player train into out-of-control mode.

In this situation, the emergency brake is activated and maintained until the train is stopped. The

player has no control over his train until it is at a standstill.

Once the train has stopped, the player can switch to Manual Mode to try to return to a correct

situation (e.g. get back to in front of the signal at danger, authorised path etc.). Once a normal

situation has been restored, the player can switch back to Auto Mode. If the action led the player

train onto a section of track already cleared for another train, that train is also stopped.

10.3.4 Explorer Mode

When OR is started in Explorer Mode instead of in an activity, the train is set to Explorer Mode.

The player has full control over all switches. Signals will clear as normal but signals can be cleared

over routes which are not normally available using the Tab or Shift+Tab commands.

10.4 Track Access Rules

All trains clear their own path. When in Auto Signal mode, part of that function is transferred to the

signals.

In Auto Node mode, trains will clear their path up to 5,000 metres, or the distance covered in 2

mins. at the maximum allowed speed, whichever is greater. In Auto Signal mode, the number of

signals cleared ahead of the train is taken from the value of the SignalNumClearAhead parameter

as defined in the sigcfg.dat file for the first signal ahead of the train.

In Manual mode, the distance cleared is 3,000 metres maximum, or as limited by signals.

Distances in Explorer Mode are similar to those in Auto Mode.

If a train is stopped at a signal it can claim the track ahead ensuring it will get priority as the next

train onto that section, but to avoid needless blocking of other possible routes, no claim is made if

the train ahead is also stopped.

No distinctions are made between types of train, and there are no priority rules.

10.5 Deadlock Processing

137

When a train is started, it will check its path against all other trains (including those not yet

started). If a section is found on which this train and the other train are due in opposite directions,

the boundaries of that total common section are determined, and ‘deadlock traps’ are set at those

boundaries, for each train in the appropriate direction. These boundaries are always switch nodes.

When a train passes a node which has a ‘deadlock trap’ for that train, the trap is sprung. When a

train approaches a node which has an active deadlock, it will stop at that node, or at the last signal

ahead of it if there is one. This train will now also spring its deadlock traps, and will claim the full

common section of that deadlock to ensure it will be the next train allowed onto that section. The

deadlock traps are removed when a train passes the end node of a deadlock section.

When a train is started, and the train’s path includes one or more reversal points, deadlocks are

only checked for the part of the path up to the first reversal point. On reversal, deadlocks are

checked for the next part, etc..

Deadlock traps are removed when a train switches to Manual mode. When the train switches back

to Auto mode, the deadlock check is performed again.

There are no deadlock checks in Explorer Mode as there are no AI trains when running in this

mode.

If an alternative path is defined (using the Passing Path definition in MSTS Activity Editor), and the

train is setting a route to the start node of this alternative path, it will check if a deadlock is set for

the related end node. If so, and the alternative path is clear, it will take the alternative path,

allowing the other train to use the main path. If the alternative path is already occupied, the train

will wait short of the node where the path starts (or the last signal in front, if any); this is to prevent

blocking both tracks which would leave the opposite train nowhere to go.

Further rules for the use of alternative paths :

 Trains from both direction must have the same main path through the area.

 If only one train has an alternative path defined, and the trains are to pass, that train will

always use the alternative path; the other train will always use the main path regardless

of which train arrives first.

 If both trains have an alternative path defined, and the trains are to pass, the first train

to clear its route will take the alternative path. Note that this need not always be the first

train to arrive - it could be that the train which first clears its path takes much longer to

actually get to the passing loop.

10.6 Reversal Points

If a reversal point is defined, the path will be extended beyond that point to the end of the section,

this is to the next switch or signal or the end of track.

The ‘diverging’ point is determined - this is the switch node where the reverse route diverges from

the incoming route. From this point, a search is made for the last signal facing the reverse

direction which is located such that the full train will fit in between the signal and the end of the

path. If there is such a signal, this will become the ‘diverging’ point. In order for a train to be able to

reverse, the rear of the train must be clear of this ‘diverging’ point.

Reversal for AI trains occurs as in MSTS; that is, when the AI train’s first car reaches the reversal

point. If at that point the rear of the train has not yet cleared the diverging point, the reversal takes

138

place later, when the diverging point is cleared.

For player trains the reversal can take place starting from 50 meters before the reversal point

provided the diverging point is cleared.

As in MSTS, double reversal points can be used to set a signal at red after such reversal points.

However waiting points are recommended for this, as explained in the next paragraph.

10.7 Waiting Points

10.7.1 General

Waiting points (WP) set in a path used by an AI train are regularly respected by the train, and

executed when the head of the train reaches the WP.

Differently from MSTS, waiting points do not influence the length of the reserved path, except

when the WP is followed by a signal in the same track section (no nodes – that is switches – in

between).

WPs set in a path used by a player train have no influence on the train run, except – again –

when the WP is followed by a signal in the same track section. In such cases, for both AI trains

and player train, the signal is set to red when the train approaches the WP.

For AI trains the signal returns to green (if the block conditions after the signal allow this) one

second after expiration of the WP.

Player trains must stop BEFORE the WP. For player trains the signal returns to green 5 seconds

after expiration of the WP.

If there are more WPs in the track section where the signal resides, only the last one influences

the signal.

Waiting points cannot be used in Timetable mode.

10.7.2 Absolute Waiting Points

When the “Extended AI shunting” option is selected and OR is not in Timetable Mode, waiting

points with a “waiting time” between 30000 and 32359 are interpreted as absolute time-of-day

waiting points, with a format 3HHMM, where HH and MM are the hour and minute of the day in

standard decimal notation.

If the AI train will reach the WP before this time of day, the WP will expire at HH:MM. If the AI train

will reach the WP later, the WP will expire after one second. This type of WP can also be used in

conjunction with a signal in the same track section, as explained in preceding paragraph.

Again, such waiting points won't have an effect on a player train if there is no signal in the same

section; if instead there is a signal, it will stay red until the WP has expired or until the train will

stop in front of the WP (the later of the two events will be considered).

Absolute waiting points are a comfortable way of synchronizing and scheduling train operation.

10.8 Signals at Station Stops

If the Experimental Option “Forced red at station stops” has been selected, and if there is a signal

at the end of a platform, that signal will be held at danger up to 2 minutes before the booked

departure. If the station stop is less than 2 minutes, the signal will clear as the train comes to a

139

stand. This applies to both AI train and player trains.

However, if the platform length is less than half the train length, the signal will not be held but will

clear as normal to allow the train to properly position itself along the platform. Signals which only

protect plain track will also not be held.

In some railway control systems trains do not get a red at the station starting signal when they

have to stop in that station. In these cases the above option must be disabled.

For signals at waiting points trains, see the preceding paragraph.

10.9 Speedposts and Speed Limits Set by Signals

Speed limits which raise the allowed speed, as set by speedposts or signals, only become valid

when the rear of the train has cleared the position of speedpost or signal.

When a speed limit set by a signal is lower than the speed limit set by the last speedpost, the

speed limit is set to the lower value. However, when a speed limit as set by a signal is higher than

the present speed limit set by the last speedpost, the limit defined by the speedpost will be

maintained. If a lower speed limit was in force due to a limit set by another signal, the allowed limit

is set to that as defined by the speedpost.

In timetable mode if a speedpost sets a limit which is higher than that set by the last signal, the

limit set by the signal is overruled and the allowed limit is set to that as defined by the speedpost.

In activity mode in the preceding case the lower of the two limits becomes valid.

10.10 Further Features of AI Train Control

 AI trains always run in Auto control mode.

 AI trains will ignore any manual setting of switches and will reset all switches as defined

in their path.

 AI trains will stop at stations and will adhere to the booked station departure times if

possible.

 AI trains will stop at a platform such that the middle of the train is in the middle of the

platform. If the train is longer than the platform, both the front and rear of the train will

extend outside the platform. If the platform has a signal at the end, and this signal is

held at danger (see further above), and the train is too long for the platform, it will stop

at the signal. But if the train length is more than double the platform length, the signal

will not be held.

 AI trains will adhere to the speed limits.

 AI trains will stop at a signal approximately 30 m. short of a signal at danger.

 Where AI trains are allowed to follow other trains in the same section passing

permissive signals, the train will adjust its speed to that of the train ahead, and follow at

a distance of approx. 300m. If the train ahead has stopped, the train behind will draw up

to a distance of about 50m. However, if the train ahead is stopped in a station, and the

train behind is also booked to stop at that station, the train will draw up behind the first

train up to a distance of a few metres.

 The control of AI trains before the start of an activity is similar to the normal control

during an activity, except that the update frequency is reduced from the normal update

140

rate to just once per second. But all rules regarding speed limits, station stops,

deadlock, interaction between AI trains (signals etc.) are followed. The position of all AI

trains at the start of an activity therefore is as close as possible to what it would have

been if the activity had been started at the start time of the first AI train.

10.11 Location-linked Passing Path Processing

for content developers:

Passing paths can be used to allow trains to pass one another on single track routes. The required

passing paths are defined per train path in the MSTS Activity Editor or in the native ORTS path

editor included within TrackViewer.

The present version is an 'intermediate' stage leading to complete new processing. The data

structure and processing have already been prepared for the next stage, when 'alternative paths'

(not just a single passing path but multiple paths through a certain area) will be defined per

location, and no longer per train.

The present version, however, is still based on the MSTS activity and path definition, and therefore

is still based on the definition of alternative paths per train.

The setup of this version is as detailed below :

 Passing paths defined for the player train are available to all trains - in both directions.

The 'through' path of the player train is taken to be the "main" path through that location.

This only applies to Activity mode, as there is no predefined player train when running in

Timetable mode.

 Each train can have definitions for additional passing paths, these will be available to

that train only.

Note that this implies that there can be more than one passing path per location.

 When possible passing locations are determined for each pair of trains, the train lengths

are taken into consideration.

A location is only 'valid' as a passing location if at least one of the trains fits into the

shortest of the available passing paths.

 The order in which passing paths are selected :

If no train is approaching from the opposite direction (through route) :

 Train's own path.

 "Main" path.

 Any alternative path.

 If train is to pass another train approaching from the opposite direction (passing route)

:

 Train's own path (if not the same as "main" path).

 Alternative path.

 "Main" path.

However, in the situation where the train does not fit on all paths, for the first train to claim a path

through the area, preference is given to the paths (if any) where the train will fit.

141

The setting of the 'deadlock' trap (the logic which prevents trains from getting on a single track

from both directions) has also been changed.

In the 'old' version, the trap was 'sprung' as a train claimed its path through a possible passing

area.

However, this often lead to quite early blocking of trains in the opposite direction.

In this version the trap is 'sprung' when a train actually claims its path in the single track section

itself.

One slight flaw in this logic is that this can lead to the train which is to wait being allocated to the

"main" path, while the train which can pass is directed over the "loop". This can happen when two

trains approach a single track section at almost the same time, each one claiming its path through

the passing areas at either end before the deadlock trap is actually sprung.

If a passing location contains platforms and there are passenger trains which are booked to stop

there, OR will try to locate an alternate platform on the passing path, and if it can find it, this

platform will replace the original one as the stop platform. This behavior occurs only if the

Location-linked Passing Path Processing option has been checked.

Selecting this type of passing path with the related experimental option processing can lead to

considerable changes in the behaviour of trains on single track routes - and behaviour that is

certainly significantly different from that in MSTS.

10.12 Other Comparisons Between Running Activities in ORTS or MSTS

10.12.1 End of run of AI trains:

AI trains end their run where the end point of their path resides, as in MSTS

10.12.2 “Default Performance” and “Performance” Parameters

If the AI train does not make station stops, its maxspeed (not considering signal, speedpost and

route speed) is given by the first MaxVelocity parameter in the .con file, expressed in meters per

second, multiplied by the "Default performance" parameter (divided by 100) that can be found and

modified in the MSTS AE in the "Service editor". Such parameter divided by 100 is written by the

AE in the .srv file as "Efficiency".

If the AI train makes station stops, its maxspeed depends from the "Performance" parameter for

every route section, as can be seen and defined in the AI train timetable (that is maxspeed is the

product of the first MAxVelocity parameter by the "Performance" parameter divided by 100).

Such performance parameter list is written (divided by 100) by the AE in "Service_Definition" block

in the activity editor, again as "Efficiency" (for every station stop).

From the starting location of the AI train up to the first station, the "Performance" linked to such

station is used; from the first station to the second one, the "Performance" linked to the second

station is used and so on. From the last station up to end of path the "Default performance"

mentioned above is used.

This corresponds to MSTS behaviour.

Moreover the Efficiency parameter is used also to compute acceleration and braking curves.

142

10.12.3 Start of Run of AI train in a Section Reserved by Another Train

The AI train is created as in MSTS. It is up to the activity creator not to generate deadlocks.

Creation of a train in a section where another train resides is possible only if the created train is “in

front” of the pre-existing train.

10.12.4 Stop Time at Stations

The platform passenger number as defined by the MSTS activity editor is read by OR.

Each passenger requires 10 seconds to board. This time must be divided by the number of

passenger wagons within the platform boundaries. Also locomotives with the line

“PassengerCapacity” in their .eng file count as passenger wagons (EMU, DMU). The criterion to

define if a passenger wagon is within the platform boundaries is different for player trains and AI

trains. For player trains an individual check is made on every passenger wagon to check if it is

within the plaform boundaries (it is assumed that this is OK if at least two thirds of the wagon are

within). For AI trains instead the number of wagons+engines within the platform is computed, and

all of them, up to the number of the passenger wagons in the consist, are considered as

passenger wagons. The player or AI train boarding time is added to the real arrival time, giving a

new departure time; this new departure time is compared with the scheduled departure time and

the higher value is selected as the real departure time.

A train is considered to be a passenger train if at least one wagon (or engine) carries passengers.

AI real freight trains (0 passenger cars) stop 20 seconds at stations as in MSTS if scheduled

starting times are not present. If they are present the freight trains will stop up to the scheduled

starting time or up to the real arrival time plus 20 seconds, whichever is higher.

A special behaviour has been introduced for trains with more than 10 cars and having a single

passenger car. This type of train has been used in MSTS to have the possibility of also defining

schedules for freight trains. These trains are managed - like MSTS - as passenger trains with the

rules defined above. However a simplification for the player has been introduced for the player

train: if the train stops with the single passenger car outside of the platform, the stop is still

considered valid.

All this is compatible with MSTS operation; only the fact that the scheduled departure time is

considered for AI trains differs, as it is considered an improvement.

10.12.5 Restricted speed zones defined in activities

OR manages restricted speed zones defined in activities as MSTS. Start of a restricted speed zone

can be recognized on the Track Monitor Window because the maxspeed is shown in red; the

maxspeed at an end of a restricted speed zone is shown in green.

10.13 Extended AI Train Shunting

for content developers:

10.13.1 General

When this option is selected further AI train shunting functions are available. Note that this option

is not available in Timetable mode.

The following additional shunting functions are available:

143

1. AI train couples to a static consist and restarts with it.

2. AI train couples to a player or AI train and becomes part of it; the coupled train continues on its

path.

3. AI train couples to a player or AI train and leaves to it its cars; the coupled and coupling train

continue on their path.

4. AI train couples to a player or AI train and “steals” its cars; the coupled and coupling train

continue on their path.

5. AI train uncouples any number of its cars; the uncoupled part becomes a static consist. With

the same function it is possible to couple any number of cars from a static consist.

6. AI train couples to a player or AI train; the resulting combined train runs for part of the path,

then stops; the train is split there into two parts that continue on their own paths (“join and split”

function).

7. AI train can get permission to pass a signal at danger.

These functions are described in detail below.

Some sample activities can be found here.

10.13.2 Activity Design for Extended AI Train Shunting Functions

Activity design can be performed with the MSTS Activity Editor, and does not need post-

processing of the created files.

10.13.2.1 Extended AI Functions 1 to 4 (these all involve coupling)

It is not always desired that AI trains couple to other trains; e.g. the activity could have been

designed so that the trains proceed separately, but then, at runtime, they could be at the same

place at the same moment because of timing problems. In such a case it would be undesirable

that the trains couple. So coupling is activated only if certain conditions are met.

In general the signal protection rules apply, that is, an AI train will find a red signal if its path leads

it directly to another train. So in general these functions can be used only if there are no signals

between the coupling train and the coupled train. However, this can be overcome in two modes:

 by the activity developer, by inserting a double reversal point between the signal and

the coupled train (this works only if the double reversal point is not in the track section

occupied by the coupled train).

 by the player, forcing the signal to the clear state by using the dispatcher window.

 or even better, by using extended AI shunting function #7, which is described further

below, that allows the train AI to pass a signal at danger.

Coupling with a static consist is not subject to other conditions, since if the activity designer

decided that the path would lead an AI train up to against a static consist, it was also desired that

the AI train would couple to it.

Coupling with another AI train or with the player train is subject to the following conditions. Either:

 the coupling happens in the last path section of the coupling AI train, and the path end

point is under the coupled train or beyond it in the same section, or

http://www.elvastower.com/forums/index.php?/topic/25224-extended-ai-train-shunting/

144

 the coupling happens in the last section before a reverse point of the coupling AI train,

and the reverse point is under the coupled train or beyond it in the same section.

In this way undesired couplings are avoided in case the AI train has its path running in the same

direction beyond the coupled train.

Just after coupling OR performs another check to define what happens next.

In the case where the coupled train is static:

 if there is at least one reverse point further in the path or if there are more than 5 track

sections further in the path, the coupling train couples with the static train, and then the

resulting formed train restarts following the path of the coupling train, or

 if not, the coupling train couples with the static train and becomes part of the static train

itself (is absorbed by it), stopping movement.

In case the coupled train is a player train or an AI train:

 if there is one reverse point under the coupled train or further in the same track section,

the coupling train couples with the coupled train; at that point there are two possibilities:

1. The trainset coupling to the coupled train is a wagon: in this case the coupling train leaves to

the coupled train all the cars between its locomotive and the coupled train, decouples and

moves further in its own path (it can only reverse due to above conditions). The coupled train

follows its own path.

2. The trainset coupling to the coupled train is a locomotive: in this case the coupling train “steals”

from the coupled train all the cars between the coupled train's locomotive and the coupling train,

decouples and moves further in its own path (it can only reverse due to the above conditions).

The coupled train follows its own path.

 or if there is no reverse point further in the path of the coupling train, the coupling train

couples with the coupled train and becomes part of it (is absorbed by it). The coupled

train follows its own path.

Now on how to design paths:

If one wants the coupling train to be absorbed by the coupled train: simply put the end point

of the path of the coupling train below the coupled train or further, but in the same track

section.

If one wants the coupling train to move further on in its path after having coupled with the

coupled train: put in the path of the coupling train a reverse point below the coupled train. If

one also wants that the coupling train does not immediately restart, but that it performs a

pause, a waiting point has to be added in the path of the coupling train, subsequent to the

reverse point. It is suggested to put the waiting point near the reverse point, and in any case

in the same track section. OR will execute the waiting point even if it is not exactly below what

remains of the coupling train after coupling/decoupling is only the locomotive.

If the coupled train is an AI train, obviously it must be stopped on a waiting point when it has

to be coupled by the coupling train.

145

10.13.2.2 Extended AI Function 5 (AI train uncouples any number of its cars)

To uncouple a predefined number of cars from an AI train, a special waiting point (WP) has to be

inserted.

The format of this waiting point (in decimal notation) is usually 4NNSS, where NN is the number of

cars in front of the AI train that are NOT uncoupled, locomotive included, and SS is the duration of

the waiting point in seconds.

The 5NNSS format is also accepted. In this case the remaining AI train is formed by NN cars

(locomotives included) starting from the rear of the train. Of course there must be at least one

locomotive in this part of the train.

It must be noted that the "front" of the AI train is the part which is at the front of the train in the

actual forward direction. So, if the consist has been created with the locomotive at first place, the

locomotive will be at the front up to the first reverse point. At that point, "front" will become the last

car and so on.

The following possibilities arise:

 The AI train proceeds and stops with the locomotive at the front, and wants to uncouple

and proceed in the same direction: a WP with the above format is inserted where the AI

train will stop, counting cars starting from the locomotive.

 The AI train proceeds with the locomotive at the rear, and wants to uncouple and

proceed in the reverse direction: a reverse point has to be put in the point where the

train will stop, and a WP has to be put sequentially after the reverse point, somewhere

under the part of the train that will remain with the train, formatted as above. As the train

has changed direction at the reverse point, again cars are counted starting from the

locomotive.

 The AI locomotive proceeds and couples to a loose consist, and wants to get only a part

of it: a reverse point is inserted under the loose consist, and a WP is inserted

sequentially after the reverse point, somewhere under the part of the train that will

remain with the train, formatted as above.

What is NOT currently possible is the ability to couple the AI train to the player train or to another

AI train, and to "steal" from it a predefined number of cars. With the currently available functions it

is only possible to steal all the cars or to pass all the cars. If it is desired that only a number of cars

be passed from an AI or player train to the other, the first AI train has to uncouple these cars as

described above, then move a bit forward, and then make the second AI train couple to these

cars.

10.13.2.3 Function 6 (Join and split)

Introduction:

Join and split means that two trains (AI or player) each start running on their own path; then they

join and run coupled together a part of their path, and then they split and run further each on its

own path (in the same direction or in opposite directions).

This can have e.g. the following example applications:

146

Application 1:

- a pair of helper locomotives couples to the rear or to the front of a long train;

- the resulting train runs uphill;

- when they arrived uphill, the helper locomotives uncouple from the train.

- if the helpers were coupled to the rear of the other train, the train continues forward on its

path, while the helper locomotives return downhill.

- If the helpers were coupled to the front, the helpers will enter a siding and stop; the train will

continue forward on its path, and when the train has passed, the helpers can reverse and

return downhill.

This means that a complete helper cycle can be simulated.

 Application 2:

- a passenger train is formed from two parts that join (e.g. two sections of a HST);

- the train reaches an intermediate station and the two sections decouple;

- one section takes the main line, while the other one takes a branch line (this can happen in

any direction for both trains).

Both the joining train (the one that moves and couples to the other train - the joined train) and

the joined train may be an AI train or a player train.

Activity development:

1) The two trains start as separate trains, couple together and decouple later in the game . After

that of course such trains can couple to other trains, and so on.

2) The coupling train becomes an "Incorporated" train after coupling, that is it has no more cars or

locomotives (they all become part of the coupled train) and is a sort of virtual train. In this phase it

is not shown in the Dispatcher information HUD. It will return to life when an uncoupling command

(automatic or manual) is issued.

3) To become an "Incorporated" train, the coupling train if of AI type must pass in its path before

coupling over a Waiting Point with value 60001 (the effective waiting time is 0 seconds); such WP

is not necessary if the coupling train is the player train.

4) For the coupling train to couple to the rear of the coupled train there are no particular

requirements; if however you want to have very short runs from coupling train start to coupling

moment, it could be necessary to insert a couple of reversal points in between, or else the train

could stop and avoid coupling. Please don't disdain double reversals: they are sometimes the only

way to limit the authority range of a train.

5) If the coupling train has to couple to the front of the coupled train, obviously a reversal point is

needed for the coupling train: it must be laid somewhere under the coupled train, or even farther

down in the same track section; also in this case there can be a problem of authority, that requires

that the coupled train has a couple of reversal points after the point where it waits to be coupled.

6) The incorporated train has its own path, but from coupling to decoupling point it must pass over

the same track sections of the path of the incorporating train. The incorporated train must not have

waiting points nor station stops in the common path part (the coupled train instead may have

them). If there are reversals within the common path part, they must be present in both paths.

7) At the point of decoupling the number of cars and locomotives to be decoupled from the train

can be different from the number of the original train.

8) The whole train part to be decoupled must lie on the same track section. After decoupling, the

147

"incorporated" train returns to being a standard AI train.

9) Manual decoupling (for player trains) occurs using the F9 window; automatic decoupling occurs

with the 4NNSS and 5NNSS commands (see previous paragraph); the first one has to be used

when the part to be decoupled is at the rear of the train, and the second one where the part is at

the front of the train.

10) In the standard case where the main part of the train continues in the same direction, the

following cases can occur:

If the decoupled part is on the front, this decoupled part can only proceed further in the same

direction (ahead of the main part of the train). To avoid it starting immediately after

decoupling, it is wise to set a WP of some tens of seconds in the path of the decoupled train.

This WP can be set at the beginning of the section where decoupling occurs; OR will move it

under the decoupled part, so you don't need to be precise in positioning it.

If the decoupled part is on the rear, two cases are possible: either the decoupled part

reverses or the decoupled part continues in the same direction. In the first case a reversal

point has to be put anywhere in the section where the decoupling occurs (better towards the

end of the section), and OR will move it to the right place so that the train reverses at the

point where decoupling occurred; moreover it is also advised to put a WP of some tens of

seconds, so that the train does not restart immediately. This WP must be located logically

after the reversal point, and in the same track section; OR will move it under the decoupled

train.

If the decoupled part continues in the same direction, neither WP nor RP are needed. This

train part will wait that the part ahead will clear the path before starting.

Activity run hints:

When you run as player, you have to uncouple the train where foreseen by the activity (the

uncoupled train must lay in a route section present in its path). If you don't uncouple on a track

section present in the path of the uncoupled train, the uncoupled train will become a static train,

because it's not on its path.

You can run the train formed by the original train plus the incorporated train from any cab (also in

a cab of the incorporated train). However before uncoupling (splitting) the trains, you have to

return to a cab of the original train.

10.13.2.4 Function 7 (Permission to pass signal at danger for AI train)

During AI train shunting there are cases where it is necessary that the AI train is conditionally able

to pass a red signal, in a similar way of the player trains when pressing TAB.

This can be accomplished by defining a specific WP with value 60002 to be laid down in the AI

train path before the signal to be passed (in the track section just in front of the signal).

10.14 Signal related files

for content developers:

OR manages signals as defined in the files sigcfg.dat and sigscr.dat in a way that is highly

compatible to MSTS. A description of their contents and how to modify these two files is contained

in the Word document “How_to_make_Signal_config_and_Script_files.doc” that is found in the

“TECH DOCS” folder of an MSTS installation. Note that these files must be edited with a Unicode

148

text editor.

10.14.1 SignalNumClearAhead

Specific rules, however, apply to the sigcfg.dat parameter SignalNumClearAhead (), that is not

managed in a consistent way by MSTS.

In this paragraph the standard case is discussed, where sigcfg.dat and sigscr.dat are located in

the root of of the route.

If for a SignalType only one SignalNumClearAhead () is defined (as is standard in MSTS files),

then this parameter defines the number of NORMAL signal heads (not signals!) that are cleared

down the route, including the signal heads of the signal where the SignalType resides. This is not

exactly as in MSTS, where quite complex and strange calculations are perfomed, and in some

cases could lead to too few signals being cleared for a satisfactory train operation.

If for a SignalType a second SignalNumClearAhead () parameter is added just before the existing

one, OR interprets it as the number of NORMAL SIGNALS that are cleared down the route,

including the signal where the SignalType resides.

MSTS will skip this first SignalNumClearAhead () and will consider only the second. In this way

this change to sigcfg.dat does not affect its use in MSTS.

However, instead of modifying the copy of the file sigcfg.dat residing in the route’s root, the

approach described in the next paragraph is recommended.

10.14.2 Location of OR-specific sigcfg and sigscr files

By simply copying the original sigscr.dat and sigcfg.dat into a subfolder named “OpenRails”

created within the main folder of the route, OR will no longer consider the pair of files located in

the route's root folder, and will interpret the (single) SignalNumClearAhead () line as defining the

number of signals cleared. So OR interprets sigscr.dat in a different way, depending whether there

is a copy of this file in the “OpenRails” subfolder or not. In this way the problem of too few signals

cleared for satisfactory train operation is usually solved.

If however this single line standard sigscr.dat doesn't behave satisfactorily even counting signals,

it will have to be optimized for OR by modifying the parameter SignalNumClearAhead () for the

unsatisfactory signals; if preferred the line can stay as it is, and an optimized line can be added

before the existing one, and it will again count signals. In this case the sigscr.dat file behaves the

same as if it would if located in the route's root folder.

Sigcfg.dat must keep its name, while the sigscr files can also have other names, provided that

within sigcfg.dat there is a reference to these other names.

10.14.3 OR-unique values for SignalNumClearAhead ()

OR recognizes two additional unique values of the parameter SignalNumClearAhead (), when this

parameter is located on a line preceding the line with the MSTS value, or if the sigcfg.dat file is

located in the subfolder “OpenRails”:

 0 : no signal will be cleared beyond this signal until train passes this signal.

 -1: signal does not count when determining the number of signals to clear.

10.15 OR-specific Signaling Functions

149

A set of powerful OR-specific signaling functions are available. Sigcfg and sigscr files referring to

these functions must be located as described in the previous paragraph.

10.15.1 SPEED Signals – a New Signal Function Type

The SPEED signal function type allows a signal object marker to be used as a speed sign.

The advantages of such a use are :

 The signal object marker only applies to the track on which it is placed. Original speed

signs always also affect any nearby lines, making it difficult and sometimes impossible

to set a specific speed limit on just one track in complex areas.

 As a signal object, the SPEED signal can have multiple states defined and a script

function to select the required state, e.g. based on route selection. This allows different

speed limits to be defined for different routes through the area, e.g. no limit for the main

line but specific limits for a number of diverging routes.

The SPEED signal is fully processed as a speed limit and not as a signal, and it has no effect on

any other signals.

Limitation : it is not possible to define different speeds related to type of train (passenger or

freight).

10.15.2 Definition and Usage

The definition is similar to that of any other signal, with SignalFnType set to "SPEED".

It allows the definition of drawstates and aspects like any other signal. Different speed values can

be defined per aspect as normal.

An aspect can be set to not have an active speed limit. If this aspect is active, the speed limit will

not be changed. This can, for instance, be used if a route-linked speed limit is required. This

aspect can then be set for a route for which no speed limit is required.

An aspect can also be set to not have an active speed limit but with a special signal flag :

OR_SPEEDRESET.

If this flag is set, the speed limit will be reset to the limit as set by the last speed limit sign. This can

be used to reset any limit imposed by a specific signal aspect. Note that this does not overrule any

speed limits set by another SPEED signal as those limits are processed as if set by a speed limit

sign.

Example :

 SignalType ("SpeedSignal"
 SignalFnType (SPEED)
 SignalLightTex ("ltex")
 SignalDrawStates (5
 SignalDrawState (0
 "speed25"
)
)
 SignalDrawState (1
 "speed40"
)
)
 SignalDrawState (2
 "speed50"
)

150

)
 SignalDrawState (3
 "speed60"
)
)
 SignalDrawState (4
 "speed70"
)
)
)
 SignalAspects (5
 SignalAspect (APPROACH_1 "speed25" SpeedMPH (25))
 SignalAspect (APPROACH_2 "speed40" SpeedMPH (40))
 SignalAspect (APPROACH_3 "speed50" SpeedMPH (50))
 SignalAspect (CLEAR_1 "speed60" SpeedMPH (60))
 SignalAspect (CLEAR_2 "speed70" SpeedMPH (70))
)
 SignalNumClearAhead (2)
)

Notes :

 The SignalNumClearAhead value must be included to satisfy syntax but has no

function.

 The actual speed can be set either using fixed aspect selection through user functions,

or can be route linked.

The actual use is defined in the related script and the related shape definition.

Example 2 :

 SignalType ("SpeedReset"
 SignalFnType (SPEED)
 SignalLightTex ("ltex")

 SignalDrawStates (1
 SignalDrawState (0
 "Red"
)
)
 SignalAspects (1
 SignalAspect (STOP "Red" signalflags (OR_SPEEDRESET))
)
 SignalNumClearAhead (2)
)

This example resets the speed to the limit as set by the last speed sign, overruling any speed

limits set by signal aspects.

10.15.3 Approach control functions

Approach control signals are used, specifically in the UK, to keep a signal at 'danger' until the train

is within a specific distance ahead of the signal, or has reduced its speed to a specific value. Such

control is used for diverging routes, to ensure the speed of the train is reduced sufficiently to safely

negotiate the switches onto the diverging route.

Two script functions for use in OR have been defined which can be used to control the signal until

151

the train has reached a specific position or has reduced its speed.

These functions are :

 APPROACH_CONTROL_POSITION(position)

 APPROACH_CONTROL_SPEED(position, speed)

These functions are Boolean functions: the returned value is 'true' if a train is approaching the

signal and is within the required distance of the signal and, for APPROACH_CONTROL_SPEED,

has reduced its speed below the required values.

Parameters :

position : required distance of train approaching the signal, in meters

speed : required speed, in meters/sec.

Note that the speed is checked only when the train is within the defined distance.

Important note : although the script uses 'float' to define local variables, these are in fact all

integers. This is also true for the values used in these functions : if direct values are used, these

must be integer values.

The values may be set directly in the signal script, either as variables or as numbers in the

function call.

However, it is also possible to define the required limits in the sigcfg.dat file as part of the signal

definition.

The syntax definition for this is :

ApproachControlLimits (<definitions>)

Allowed definitions :

 Position :

 Positionm : position in meters.

 Positionkm : position in kilometers.

 Positionmiles : position in miles.

 Positionyd : position in yards.

 Speed :

 Speedkph : speed in km / hour.

 Speedmph : speed in miles / hour.

These values are referenced in the script file using the following variable names :

 Approach_Control_Req_Position

 Approach_Control_Req_Speed

These variables must not be defined as floats etc., but can be used directly without prior definition.

Note that the values as defined in the sigcfg.dat file will be converted to meters and meters/sec

and rounded to the nearest integer value.

152

Example

This example is for a three-head search light signal, which uses Approach Control if the route is

set to the 'lower' head.

Route selection is through 'dummy' DISTANCE type route-selection signals.

Signal definition :

 SignalType ("SL_J_40_LAC"
 SignalFnType (NORMAL)
 SignalLightTex ("bltex")
 SigFlashDuration (0.5 0.5)
 SignalLights (8
 SignalLight (0 "Red Light"
 Position (0 6.3 0.11)
 Radius (0.125)
)
 SignalLight (1 "Amber Light"
 Position (0 6.3 0.11)
 Radius (0.125)
)
 SignalLight (2 "Green Light"
 Position (0 6.3 0.11)
 Radius (0.125)
)
 SignalLight (3 "Red Light"
 Position (0 4.5 0.11)
 Radius (0.125)
)
 SignalLight (4 "Amber Light"
 Position (0 4.5 0.11)
 Radius (0.125)
)
 SignalLight (5 "Green Light"
 Position (0 4.5 0.11)
 Radius (0.125)
)
 SignalLight (6 "Amber Light"
 Position (0 2.7 0.11)
 Radius (0.125)
)
 SignalLight (7 "White Light"
 Position (0 2.7 0.11)
 Radius (0.125)
)
)
 SignalDrawStates (8
 SignalDrawState (0
 "Red"
 DrawLights (1
 DrawLight (0)
)
)
 SignalDrawState (1
 "TopYellow"
 DrawLights (1
 DrawLight (1)
)
)
 SignalDrawState (2
 "TopGreen"
 DrawLights (1
 DrawLight (2)

153

)
)
 SignalDrawState (3
 "TopYellowMidGreen"
 DrawLights (2
 DrawLight (1)
 DrawLight (5)
)
)
 SignalDrawState (4
 "MidYellow"
 DrawLights (2
 DrawLight (0)
 DrawLight (4)
)
)
 SignalDrawState (5
 "MidGreen"
 DrawLights (2
 DrawLight (0)
 DrawLight (5)
)
)
 SignalDrawState (6
 "LowYellow"
 DrawLights (3
 DrawLight (0)
 DrawLight (3)
 DrawLight (6)
)
)
 SignalDrawState (7
 "LowWhite"
 DrawLights (3
 DrawLight (0)
 DrawLight (3)
 DrawLight (7 SignalFlags (FLASHING))
)
)
)
 SignalAspects (8
 SignalAspect (STOP "Red")
 SignalAspect (STOP_AND_PROCEED "LowWhite" SpeedMPH(25))
 SignalAspect (RESTRICTING "LowYellow" SpeedMPH(25))
 SignalAspect (APPROACH_1 "MidYellow" SpeedMPH(40))
 SignalAspect (APPROACH_2 "TopYellowMidGreen")
 SignalAspect (APPROACH_3 "TopYellow")
 SignalAspect (CLEAR_1 "MidGreen" SpeedMPH(40))
 SignalAspect (CLEAR_2 "TopGreen")
)

 ApproachControlSettings (
 PositionM (500)
 SpeedMpH (10)
)
 SignalNumClearAhead (5)
)

Signal function (reduced to show use of approach control only).

This function uses approach control for the 'lower' route.

///

SCRIPT SL_J_40_LAC

154

// Searchlight Top Main Junction
 extern float block_state ();
 extern float route_set ();
 extern float def_draw_state ();
 extern float next_sig_lr ();
 extern float sig_feature ();
 extern float state;
 extern float draw_state;
 extern float enabled;

//
// Returned states
// drawn :
// SIGASP_STOP
//
// Top Cleared :
// SIGASP_APPROACH_3
// SIGASP_APPROACH_2
// SIGASP_CLEAR_2
//
// Middle Cleared :
// SIGASP_APPROACH_1
// SIGASP_CLEAR_1
//
// Lower Cleared :
// SIGASP_RESTRICTING
// SIGASP_STOP_AND_PROCEED
//
// User Flags
//
// USER1 : copy top approach
// USER2 : top approach junction
// USER3 : copy middle approach
// USER4 : no check block for lower
//

 float clearstate;
 float setstate;
 float diststate;
 float adiststate;
 float nextstate;
 float routestate;
 float blockstate;

 blockstate = 0;
 clearstate = 0;
 routestate = 0;
 setstate = 0;
 nextstate = next_sig_lr(SIGFN_NORMAL);
 diststate = next_sig_lr(SIGFN_DISTANCE);
 adiststate = diststate;

 if (diststate ==# SIGASP_CLEAR_1)
 {
 diststate = SIGASP_CLEAR_2;
 }
 if (diststate ==# SIGASP_APPROACH_1)
 {
 diststate = SIGASP_APPROACH_3;
 }

// get block state
 if (!enabled)
 {

155

 clearstate = -1;
 }

 if (block_state () ==# BLOCK_JN_OBSTRUCTED)
 {
 clearstate = -1;
 }

 if (block_state() ==# BLOCK_OCCUPIED)
 {
 blockstate = -1;
 }

// check if distant indicates correct route
 if (diststate ==# SIGASP_STOP)
 {
 clearstate = -1;
 }

// top route
 state = SIGASP_STOP;

 if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_CLEAR_2)
 {
 // aspect selection for top route (not shown)

 }

// middle route
 if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_APPROACH_3)
 {
 // aspect selection for middle route (not shown)

 }

// lower route
 if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_RESTRICTING)
 {
 if (Approach_Control_Speed(Approach_Control_Req_Position, Approach_Control_Req_Speed))
 {
 state = SIGASP_RESTRICTING;
 }
 }

// Get draw state
 draw_state = def_draw_state (state);

10.15.4 TrainHasCallOn Function

This function is intended specifically to allow trains to 'call on' in Timetable mode when allowed to

do so as defined in the timetable. The use of this function allows a train to 'call on' into a platform

in Timetable mode without jeopardizing the functionality in normal Activity mode.

It is a Boolean function and returns state as follows :

 Activity Mode :

 Returns true if :

 Route from signal is not leading into a platform.

 Timetable Mode :

 Returns true if :

156

 Route from signal is not leading into a platform.

 Route from signal is leading into a platform and the train has a booked stop in

that platform, and any of the following states is true :

 Train has $CallOn command set for this station.

 Train has $Attach command set for this station and the train in the

platform is the train which it has to attach to.

 Train is part of RunRound command, and is to attach to the train

presently in the platform.

The use of this function must be combined with a check for

blockstate ==# BLOCK_OCCUPIED.

Note : this function must NOT be used in combination with

blockstate ==# JN_OBSTRUCTED.

The state JN_OBSTRUCTED is used to indicate that the route is not accessible to the train (e.g.

switch set against the train, opposite movement taking place etc.).

Some signal scripts allow signals to clear on blockstate ==# JN_OBSTRUCTED. This can lead to

all kinds of incorrect situations.

These problems are not due to programming errors but to route signal script errors.

Example (part of script only) :

if (enabled && route_set())
{
 if (block_state == #BLOCK_CLEAR)
 {
 // normal clear, e.g.
 state = #SIGASP_CLEAR_1;
 }
 else if (block_state == #BLOCK_OCCUPIED && TrainHasCallOn())
 {
 // clear on occupied track and CallOn allowed
 state = #SIGASP_STOP_AND_PROCEED;
 }
 else
 {
 // track is not clear or CallOn not allowed
 state = #SIGASP_STOP;
 }
}

10.15.5 TrainHasCallOn_Restricted Function

This function has been introduced because signals with call-on aspects can be used not only as

entrance signals for stations, but also on 'free line' sections, that is, away from stations.

TrainHasCallOn always allows call-on if the signal is on a 'free-line' section. This is to allow proper

working for USA-type permissive signals.

Some signal systems however use these signals on sections where call-on is not allowed. For this

case, the TrainHasCallOn_Restricted function has been introduced.

When approaching a station, both functions behave the same, but on 'free line' sections, the

TrainHasCallOn_Restricted() will never allow call-on.

157

So, in a nutshell :

Use on approach to stations :

 TrainHasCallOn() and TrainHasCallOn_Restricted() :

 Activity : call-on not allowed

 Timetable : call-on allowed in specific situations (with $callon, $stable or

$attach commands)

Use on 'free line' :

 TrainHasCallOn() :

 Activity or Timetable : call-on always allowed

 TrainsHasCallOn_Restricted() :

 Activity or Timetable : call-on never allowed

10.15.6 How to Lay Down These Signals on the Route

These signals can be laid down with the MSTS RE. In the .tdb file only a reference to the

SignalType name is written, an in the world file only a reference to the signal head is written. As

these are accordingly to MSTS standards, no need to manually edit route files exists.

10.15.7 Signalling Function NEXT_NSIG_LR

This function is similar to NEXT_SIG_LR, except that it returns the state of the nth signal ahead.

Function call : state = NEXT_NSIG_LR(MstsSignalFunction fn_type, int n).

Returned value : state of nth signal ahead, except :

 When there are less than n signals ahead of the train.

 when any of the intermediate signals is at danger.

In those situations, the function will return SIGASP_STOP.

Usage : take, for instance, the sequence of signals as shown below.

The distance between signals B and C, as well as between C and D, is shorter than the required

braking distance. Therefore, if D is at danger, both C and B must show yellow; similar, if C is at

danger, both B and A must be yellow.

Problem now is what aspect should be shown at A : if B is yellow, is it because C is at red, so A

must also be yellow, or is it because C is at yellow as D is at red - in which case A can show

green. One could, of course, use two different states for yellow at C, but that soon gets rather

complicated, and also one might soon run out of available aspects.

With the new function, it becomes simpler : if B is at yellow, A can directly check the state of C,

and so decide if it can clear to green or must show yellow.

158

Suppose state SIGASP_STOP shows red, SIGASP_APPROACH_1 shows yellow and

SIGASP_CLEAR_1 shows green for all signals, the related part of the script could be as follows:

if (next_sig_lr(SIGFN_NORMAL) == SIGASP_APPROACH_1)
{
 if (next_nsig_lr(SIGFN_NORMAL, 2) == SIGASP_STOP)
 {
 state = SIGASP_APPROACH_1;
 }
 else
 {
 state = SIGASP_CLEAR_1;
 }
}

The function is also very useful when a distant signal is to reflect the state of more than one home

signal, but dist_multi_sig_mr cannot be used because there is no distant signal further on.

10.15.8 Signalling Function HASHEAD

This function can be used for any optional SIGNAL_HEAD as defined for the relevant signalshape

in sigcfg.dat, to check if that has been selected for this signal or not.

Using 'DECOR' dummy heads, this allows these heads to be used as additional user settings, and

as such are kind of an extension to the four available SIGFEAT_USER flags.

Please note that this function is still experimental.

Function call : state = HASHEAD(headname);

Function returns 1 if head is set, else 0.

159

10.16 OR-Specific Additions to Activity Files

The additions described below will be ignored by MSTS. Make these additions to the .act file with

a Unicode-enabled editor. Note that these additions will be removed by the MSTS Activity Editor if

the .act activity file is opened and saved as an .act file by the AE. However, if the activity is

opened in the AE and saved in an .apk Activity Package, the additions will be included.

Since activity files are not used in Timetable mode, none of the following features will operate in

that mode.

10.16.1 No Halt by Activity Message Box

MSTS activities may contain instructions to display a message box when the player train reaches

a specific location in the activity, or at a specific time. Normally the simulation is halted when the

message box is displayed until the player manually closes the box. This behavior can be modified

if the line:

ORTSContinue (nn)

where nn = number of seconds to display the box,

is added to the event declaration (EventTypeLocation or EventTypeTime) in the .act file.

 For example:

EventCategoryLocation (

EventTypeLocation ()

ID (1)

Activation_Level (1)

Outcomes (

DisplayMessage ("Test nopause.")

)

Name (Location1)

Location (-146 14082 -1016.56 762.16 10)

TriggerOnStop (0)

ORTSContinue (10)

)

Now, the activity will continue to run while the message window is displayed. If the player does

nothing, the window disappears automatically after nn seconds. The player may close the window

manually or pause the activity by clicking on the appropriate button in the window. Note that this

modification does not work for the terminating event of the activity.

10.16.2 AI Train Horn Blow

This feature requires selection of the Extended AI train shunting option.

Horn blow by AI trains is achieved by inserting into the AI train path a waiting point with a waiting

time value between 60011 (1 second horn blow) and 60020 (10 seconds horn blow).

The AI train will not stop at these waiting points, but will continue at its regular speed.

If a "normal" waiting point follows a horn blow waiting point, the horn blow must be terminated

before the normal waiting point is reached (just in case).

On the other hand, a horn blow waiting point may be positioned just after a normal WP (thus

achieving the effect that the train blows the horn when it restarts).

160

10.16.3 AI Horn Blow at Level Crossings

If the line:

ORTSAIHornAtCrossings (1)

is inserted into the activity file following the line:

NextActivityObjectUID (32768)

(note that the number in the brackets may be different), then AI trains will blow their horn at level

crossings for a random time between 2 and 5 seconds.The level crossing must be defined as such

in the MSTS route editor. “Simple” road crossings, not defined as level crossings, may also be

present in the route. The AI train will not blow the horn at these crossings. Examining the route

with TrackViewer allows identification of the true level crossings. If a horn blow is also desired for

a”simple” road crossing, the feature “AI Train Horn Blow”, described above, must be used.

10.16.4 Location Event and Time Event Sound File

An activity file can be modified so that a sound file is played when the train reaches a location

specified in an EventTypeLocation event in the .act file, or when a certain time interval specified in

an EventTypeTime event has elapsed since the start of the activity. Add the line:

ORTSActSoundFile (Filename SoundType)

to the EventCategoryLocation or EventCategoryTime event, where:

Filename = name, in quotations, of a .wav file located in the SOUND folder of the route. (If

the .wav file is located elsewhere in the computer, the string must contain also the path from

the SOUND folder to the location where the sound is located.)

Soundtype = any one of the strings:

 “Everywhere” – sound is played in all views at the same volume without fading effects

 “Cab” – sound is played only in the cab

 “Pass” – sound is played only in the active passenger view

 “Ground” - sound is played externally from a fixed position, the one that the

locomotive has reached when the event is triggered. The sound is also heard in internal

views in an attenuated way, and becomes attenuated by moving away from the position.

For example:

EventCategoryLocation (

EventTypeLocation ()

ID (7)

Activation_Level (1)

Outcomes (

DisplayMessage ("This message won't be shown because

ORTSContinue = 0”)

)

Name (Location6)

Location (-146 14082 -1016.56 762.16 10)

TriggerOnStop (0)

ORTSContinue (0)

ORTSActSoundFile ("x_Next_stop_MiClei.wav" "Pass")

)

161

Including the ORTSContinue line (explained above) inhibits the normal halting of the activity

by the event. Also, if the value of 0 is inserted in the line as in the example above, the display

of the event message is completely suppressed. Only one sound file per event is allowed.

10.16.5 Weather Change Activity Event

An activity can be modified so that the weather changes when running the activity in ORTS. MSTS

operation is not affected by these WeatherChange events. The following block can be added

within an Event Block (either a Location or a Time event) of the .act file:

ORTSWeatherChange (

ORTSOvercast (final_overcastFactor(float) overcast_transitionTime(int))

ORTSFog (final_fogDistance(float) fog_transitionTime(int))

ORTSPrecipitationIntensity (final_precipitationIntensity(float)

precipitationIntensity_transitionTime(int))

ORTSPrecipitationLiquidity (final_precipitationLiquidity(float)

precipitationLiquidity_transitionTime(int))

)

The weather will change accordingly during the activity.The ranges of the factors are as follows:

 final_overcastFactor: value from 0 to 1.

 final_fogDistance: value from 10 (meters) to 100000.

 final_precipitationIntensity: value from 0 to 0.020 (clamped to 0.010 if a 16 bit graphics

card is used).

 final_precipitationLiquidity: value from 0 to 1.

The weather type will change accordingly to the following rules:

 When precipitationIntensity falls to 0, the weather type is set to Clear.

 when precipitationIntensity rises above 0 the weather type is selected accordingly to

final_precipitationLiquidity.

 when precipitationLiquidity is above 0.3 the weather type is set to Rain.

 when precipitationLiquidity is below or equal to 0.3, weather type is set to Snow.

The parameter ORTSPrecipitationLiquidity allows for a smooth transition from rain

(ORTSPrecipitationLiquidity = 1) to snow (ORTSPrecipitationLiquidity = 0) and vice-versa.

The xx_transitionTime is expressed in seconds, and indicates the time needed to pass from the

initial weather feature value (overcastFactor, fogDistance and so on) to the final weather feature

value. If such xx_transitionTime is set to 0, the weather feature takes immediately the final value.

This is useful to start activities with weather features in intermediate states.

The event can also include an ORTSContinue (0) line, therefore not displaying messages and

not suspending activity execution.

Manual commands related to weather interrupt the weather change triggered by the above events.

Each Event Block in the activity file may include only one WeatherChange block, and every

WeatherChange block may include one to all of the lines specified above.

Event blocks including WeatherChange blocks may be partly interlaced (execution of one block

can be still active at the moment a new WeatherChange block is triggered). Execution of the

various weather parameter changes remains independent. If one weather parameter is present in

162

both events, the execution of the parameter change commanded by the first block is stopped and

the one commanded by the second block is started.

Note: editing the .act file with the MSTS Activity Editor after inclusion of WeatherChange events

will remove them, so they should be backed up separately. Opening an .act file that contains

WeatherChange events with the MSTS Activity Editor and packaging it without editing it generates

an .apk file that contains the WeatherChange events.

163

11 Timetable Mode

11.1 Introduction

The timetable concept is not a replacement for the activity definition, but is an alternative way of

defining both player and computer-controlled (AI and Static) trains.

In an activity, the player train is defined explicitly, and all AI trains are defined in a traffic definition.

Static trains are defined separately.

In a timetable all trains are defined in a similar way. On starting a timetable run, the required

player train is selected from the list of available trains. In the timetable definition itself, no

distinction is made between running trains – any of the running trains can be selected as player

train, and if not selected as such they will be run as AI trains. Static trains are also defined in the

same way but cannot be selected as the player train.

As a result, the number of different 'activities' that can be played using the same timetable file is

equal to the number of trains which are defined in the timetable.

The development of the timetable concept is still very much a work in progress. This document

details the state as it is at the moment, but also includes items yet to be produced, or items which

have yet to be developed further.

To distinguish between these items, the following styles are used in the description of timetable

mode.

Items shown in black italics are available but only in a provisional implementation, or in a limited

context. Further development of these items is still required.

Important aspects where the use of specific OR or MSTS items for timetables differs

significantly from its use in an activity are shown in bold.

Apart from the items indicated as above, it should be realised that as work continues, all items are

still subject to change.

11.2 General

11.2.1 Data definition

The timetable data is defined in a Spreadsheet, and saved as a *.csv file (character separated file)

in Unicode format. As the separation character, either ',' (comma) or ';' (semi-colon) must be used.

Do not select space or tab as the separation character.

As ';' or ',' are possible separation characters, these symbols must not be used anywhere within

the actual data. Enclosure of text by quotes (either single or double) has no effect. Also, the

character ‘#’ should not be used in train names, since it is the prefix for reserved words in the

Timetable.

11.2.2 File structure

The saved *.csv files must be renamed with the extension “*.timetable_or”. The timetable files

must be placed in a subdirectory named “OpenRails” created in the route's “Activities” directory.

164

11.2.3 File and train selection

When starting a timetable run, the mode “Timetable” is selected in the menu. The desired

timetable file must then be selected in the “Timetable set” display.

After selecting the required timetable, a list of all trains contained in that timetable is displayed and

the required train can be selected.

Season and weather can also be selected; these are not preset within the timetable definition.

11.3 Timetable Definition

11.3.1 General

A timetable consists of a list of trains, and, per train, the required timing of these trains. The timing

can be limited to just the start time, or it can include intermediate times as well.

At present, intermediate timings are limited to 'platform' locations as created using the MSTS

Route Editor.

Each column in the spreadsheet contains data for a train and each row represents a location. A

cell at the intersection of a train and location contains the timing data for that particular train at that

location.

Special rows and columns can be defined for general information or control commands.

The first row for each column contains the train definition.

The first column for each row contains the location definition.

The cell at the intersection of the first row and first column must be empty.

This paragraph only lists the main outline, a fuller detailed description will follow in the next

paragraphs.

11.3.2 Column definitions

A column is defined by the contents of the first row.

Default, the first row defines the train name.

Special columns can be defined using the following syntax :

#comment : column contains comment only and is ignored when reading the timetable.

<blank> : column is extension of preceding column.

11.3.3 Row definitions

A row is defined by the contents of the first column.

Default, the first column defines the stop location.

Special columns can be defined using the following syntax :

#comment : row contains comment only and is ignored when reading the timetable

<blank> : row is extension of row above

#path : defines train path

#consist : defines train consist

#start : defines time when train is started

#note : defines general notes for this train

#dispose : defines how train is handled after it has terminated

165

11.3.4 Timing details

Each cell which is at an intersection of a train column and a location row, can contain timing

details for that train at that location.

Presently, only train stop details can be defined. Later on, passing times will also be defined; these

passing times can be used to determine a train's delay.

Control commands can be set at locations where the train stops, but can also be set for locations

where no timing is inserted as the train passes through that location without stopping.

11.4 Timetable Data Details

11.4.1 Timetable Description

Although #comment rows and columns are generally ignored, the contents of the cell at the

intersection of the first #comment row and first #comment column is used as the timetable

description and appears as the timetable’s name in the Open Rails menu.

11.4.2 Train Details

The train name as defined in the first row must be unique for each train in a timetable file.This

name is also used when referencing this train in a train command; see details below.

The sequence of trains is not important.

11.4.3 Location Details

At present, the possible locations are restricted to 'platforms' as defined in the MSTS Route Editor.

Each location must be set to the 'Station Name' as defined in the platform definitions.

The name used in the timetable must exactly match the name as used in the route definition (*.tdb

file), otherwise the location cannot be found and therefore cannot be processed.

Also, each location name must be unique, as otherwise its position in the train path could be

ambiguous.

The sequence of the locations is not important, as the order in which the stations are passed by a

train is defined in that train's path. For the same reason, a train's path can be set to just run in

between some of the locations, or be set to bypass certain stations.

11.4.4 Timing Details

Each cell at an intersection of train and location can contain the timing details of that train at that

location.

Times are defined as HH:mm, and the 24-hour clock must be used.

If a single time is inserted it is taken as the departure time (except at the final location).

If both arrival and departure time are to be defined, these must be separated by '-'.

Additional control commands can be included. Such commands can also be set for locations

where the train does not stop and therefore has no timing details, but the train must pass through

that location for the commands to be effective.

Although a location itself can be defined more than once in a timetable, it is not possible to define

timing details for trains for a location more than once. If a train follows a route which takes it

through the same location more than once, the train must be 'split' into separate train entries.

166

11.4.5 Special Columns

 #Comment column

A column with the #comment definition in the first row is a comment column and is ignored

when reading the timetable, except for the cell at the intersection of the first comment column

and the first comment row.

 <Blank> column

A column with a blank (empty) cell in the first row is taken as a continuation of the preceding

column. It can be used to insert control commands which apply to the details in the preceding

column. This can be useful when timings are derived automatically through formulas in the

spreadsheet as inserting commands in the timing cell itself would exclude the use of such

formulas.

11.4.6 Special rows

 #Comment row

A row with the #comment definition in the first column is a comment row and is ignored when

reading the timetable, except for the cell at the intersection of the first comment column and

the first comment row.

 <Blank> row
A row with a blank (empty) cell in the first column is taken as a continuation of the preceding

row.

 #Path row

The #path row defines the path of that train. The path must be a *.pat file as defined by the

MSTS Activity Editor, and must be located in the route's Path directory. This field is

compulsory.

The timetable uses the same paths as those defined for activities.

However, waiting points must not be defined in paths for use in timetables as the

processing of waiting points is not supported in the timetable concept.

Waiting points within a timetable must be defined using the specific control

commands.

The #path statement can take a qualifier : /binary.

Large timetables can require many paths, and loading those paths can take considerable

time (several minutes).

To reduce this loading time, the paths can be stored in a processed, binary format. This

format is the same as used in the 'save' command.

Note that the binary path information cannot be directly accessed by the user, either for

reading or for writing.

When /binary is set, the program will check if a binary path exists. If so, it will read that path.

If not, it will read the 'normal' path, and will then store this as binary for future use.

Binary paths are stored in a subdirectory named “OpenRails” which must be created in the

Paths directory of the route.

167

Important:

If a path is edited, the binary version must be deleted manually, otherwise the program will

still use this older version.

If a route is edited, such that the .tdb might have been changed, all binary paths must be

deleted.

 #Consist row

The #consist row defines the consist used for that train. This field is compulsory.

However, if the train is run as an AI train and it is 'formed' out of another train (see below), the

consist information is ignored and the train uses the consist of the train out of which it was

formed.

For the player train, the consist is always used even if the train is formed out of another train.

The consist definition must be a *.con file as defined by the MSTS Activity Editor, and must

be stored in the defined consist directory.

Also a more complex syntax of the consist definition is possible, as described below.

This allows a consist definition to be not just a single string directly referring to a file, but a

combination of strings, with the possibility to use (part of) the consist in reverse.

The general syntax is :

consist [$reverse] [+ consists [$reverse] [+ ...]]

Example : a loco-hauled train, using the same set of coaches, running in both directions.

Two consists are defined : c_loco and c_wagons.

The consist definitions which can now be used are :

c_loco + c_wagons , and for reverse : c_loco $reverse + c_wagons $reverse

Please note that $reverse always applies only to the sub-consist with which it is defined,

not for the complete combined consist.

If this train sometimes has some additional wagons, e.g. during rush hours, the consists

can be defined as follows (with c_add the definition of the additional wagons) :

c_loco + c_wagons + c_add , and for reverse : c_loco $reverse + c_add $reverse +

c_wagons $reverse

Clearly, this can save on the definition of the total required consists, and in particular

saves the tedious task of having to define 'reverse' consists.

When using multiple units, this is even more useful.

Suppose there are two sets of multiple units, running either as single trains or combined.

Normally, six different consists would be required to cover all trains, but now only two will

suffice : set_a and set_b.

The various combinations are :

set_a , reverse set_a $reverse.

set_b , reverse set_b $reverse.

set_a + set_b , reverse set_b $reverse + set_a $reverse.

168

Consist strings which contain '+' or '$' can be used in timetables but must be enclosed

by < >. For instance :

<loco+wagon>+<$loco+wagon>$reverse

 #Start row

The #start row defines the time at which the train is started. It must be defined as HH:mm,

and the 24 hour clock must be used. This field is compulsory.

Use of start time for AI trains :

 When a train is formed out of another train and this other train is included to run in the

timetable, the time defined in #start is only used to define when the train becomes

active.

Use of start time for player train :

 The time as defined in #start is normally used as the start time of the timetable

'activity'.

If a train is formed out of another train and this train is included in the timetable, then if this

train is delayed and has not arrived before the defined start time, the starting of this train is

also delayed until the train out of which it is formed has arrived. This applies to both AI and

player train. This means that the start of the player activity can be delayed.

For details on starting and running of trains around midnight see the paragraph below.

The #start field can also contain the following command:

 $create[=<time>] [/ahead=<train>]

The $create command will create that train at the time as indicated. If no time is set, the train

will be created before the start of the first train. The train will be 'static' until the time as set as

start time.

The normal rules for train placement still apply, so a train cannot be placed onto a section of

track already occupied by another train.

However, storage sidings often hold multiple trains. To allow for this, and to ensure the trains

are stored in proper order (first one out up front), the parameter [/ahead=<train>] must be

used.

The train will now be placed ahead of the referenced train, in the direction of the train's path.

Multiple trains can be stored on a single siding, but care must be taken to set the proper

references. The reference must always be to the previous train - two trains cannot reference

the same train in the /ahead parameter as that would cause conflict.

If the total length of all trains exceeds the length of the sidings, the trains will 'spill out' onto

whatever lies beyond.

Note that a train referenced in an /ahead parameter must be created before or at the same

time as the train which uses that reference.

 #Note row

The #note row can be used to defined control commands which are not location related but

apply to the full run of the train. It can also be used to set commands for trains which do not

stop at or pass through any defined location. This row is optional.

169

The following commands can be inserted in the #note field of each train:

$acc=n

$dec=n

These commands set multiplication factors for the acceleration ($acc) and deceleration

($dec) values used for that train.

The program uses average acceleration and deceleration values for all trains (difference

values for freight, passenger and high speed trains). But these values are not always

adequate, especially for modern trains. This can lead to delays when trying to run to a real life

timetable.

Using the $acc and $dec commands, the values used can be modified. Note that these

commands do not define an actual value, but define a factor; the default value will be

multiplied by this factor.

However, setting a higher value for acceleration and deceleration does not mean that the

trains will always accelerate and decelerate faster according to the set value. Most of the

time, the train behaviour is controlled through the physics.

But especially the $dec factor does have an important side effect. The deceleration value is

also used to calculate the expected required braking distance. Setting a higher deceleration

will reduce the required braking distance, allowing the train to continue to run at maximum

allowed speed for longer distances. This can have a significant effect on the timing.

Take care, though, not to set the value too high - the calculated braking distance must of

course be sufficient to allow for proper braking, otherwise the train cannot stop in time

resulting in SPADs etc.

A typical value for modern stock for the $dec command is 2 or 3.

#Dispose row

The #dispose row defines what happens to an AI train when it has reached the end of its run,

i.e. it has reached the end of the defined path.

The information in the #dispose row can detail if the train is to be formed into another train,

and, if so, how and where. For details see the commands as described further down.

This row is optional and if included, the use per train is also optional.

If the row is not included or the field is not set for a particular train, the train is removed from

the activity after it has terminated.

The #dispose row presently does not affect the end of the run for the player train.

170

11.4.7 Control commands

11.4.7.1 General

Control commands can be set to control train and signaling behaviour and actions.

There are four sets of commands available :

 Location commands

 Train control commands

 Create commands

 Dispose commands

11.4.7.2 Command syntax

All commands have the same basic syntax.

A command consists of :

 Syntax name : defines the control command.

 Syntax value : set the value related to the command.

Not all commands take a value.

 Syntax qualifiers : adds additional information to the command.

Not all commands have qualifiers.

Some qualifiers may be optional but others may be compulsory, or compulsory only in

combination with other qualifiers.

 Syntax qualifier values : a qualifier may require a value

Command syntax :

$name = value /qualifier=value

Multiple values may be set, separated by '+'.

Note that any qualifiers always apply to all values.

11.4.7.3 Train Reference

Many commands require a reference to another train.

This reference is the other train's name as defined in the first row.

11.4.7.4 Location Commands

Location commands are :

 $hold

 $forcehold

 $nowaitsignal

 $terminal

These commands are also available as train control commands and are detailed in that paragraph.

11.4.7.5 Train control commands.

All available train control commands are detailed below.

171

These commands can be set for each timing cell, i.e. at each intersection of train column and

location row. The commands will apply at and from the location onward (if applicable).

Some commands can also be set in the #note row, in which case they apply from the start of the

train. These commands are indicated below by an asterisk (*) behind the command name

The commands $hold and $nosignalwait can also be set as location commands.

$hold, $nohold and $forcehold

If $hold is set, it defines that the exit signal for that location must be held at danger up to 2

minutes before train departure.

An exit signal is allocated to a platform if this signal is beyond the end platform marker (in the

direction of travel), but is still within the same track node - so there must not be any points

etc. between the platform marker and the signal.

By default, the signal will not be held.

If set per location, it will apply to all trains, but can be overridden for any specific train by

defining $nohold in that train's column.

If set per train, it will apply to that train only.

$forcehold will set the first signal beyond the platform as the 'hold' signal, even if this signal is

not allocated to the platform as exit signal. This can be useful at locations with complex layout

where signals are not directly at the platform ends, but not holding the signals could lead to

delay to other trains.

$callon

This will allow a train to 'call on' into a platform occupied by another train.

For full details, see the discussion above on the relationship between signalling and

timetable.

$connect

Syntax : $connect=<train> /maxdelay=n /hold=h

Defines that a train is to wait at a station until another train has arrived, so as to let

passengers make the connection between the trains.

The train will be timetabled to allow this connection, and the $connect command is set to

maintain this connection if the arriving train is running late.

Note that the $connect command will not lock the signal. If the paths of this train and the

arriving train conflict before the arriving train reaches the station, additional $wait or $hold

commands must be set to avoid deadlock.

Command value : reference to train which is to be waited for, this is compulsory.

172

Command qualifiers :

/maxdelay=n : n is the maximum delay (in minutes) of the arriving train for which this train

is held.

If the delay of the arriving train exceeds this value the train will not wait. The

maximum delay is independent from this train's own delay.

This qualifier and its value are compulsory.

/hold=h : h is the time (in minutes) the train is still held after the other train has

arrived, and relates to the time required by the passengers to make the connection.

This qualifier and its value are compulsory.

$wait *

Syntax : $wait=<train> /maxdelay=n /notstarted /owndelay=n

Defines that a train is to wait for the referenced train to allow this train to proceed first.

The referenced train can be routed in the same or the opposite direction as this train itself.

A search is done for the first track section which is common to both trains, starting at the

location where the $wait is defined, or at the start of the path if defined in the #note row.

If the start location is already common for both trains, then first a search is done for the first

section which is not common to both trains, and the wait is applied to the next first common

section beyond that.

If the wait is set, the section will not be cleared for this train until the referenced train has

passed this section. This will force the train to wait. The referenced train must exist for the

wait to be valid.

However, if /notstarted is set, the wait will also be set even if the referenced train has not yet

been started. This can be used where the wait position is very close to the start position of

the referenced train, and there is a risk that the train may clear the section before the

referenced train is started.

Care should be taken when defining a $wait at a location where the train is to reverse. As the

search is performed for the active subpath only, a $wait defined at a location where the train

is to reverse will not be effective as the common section will be in the next subpath after the

reversal. In such a situation, the train should be 'split' into two separate definitions, one up to

the reversal location and another starting at that location.

Command value : referenced train, this is compulsory.

Command qualifiers :

/maxdelay=n : n is the maximum delay (in minutes) of the referenced train for which the

wait is still valid.

This delay is compensated for any delay of the train which is to wait, e.g. if maxdelay is 5

minutes, the referenced train has a delay of 8 minutes but this train itself has a delay of 4

minutes, the compensated delay is 4 minutes and so the wait is still valid.

This parameter is optional, if not set a maxdelay of 0 minutes is set as default.

/notstarted : the wait will also be applied if the referenced train has not yet started.

173

/owndelay = n (n is delay in minutes); the owndelay qualifier command makes the

command valid only if the train in question is delayed by at least the total minutes as set

for the owndelay qualifier.

This can be used to hold a late-running train such that is does not cause additional

delays to other trains, in particular on single track sections.

$follow *

Syntax : $follow=<train> /maxdelay=n /owndelay=n

This command is very similar to the $wait command, but in this case it is applied to each

common section of both trains beyond a part of the route which was not common.

The train is controlled such that at each section where the paths of the trains re-join after a

section which was not common, the train will only proceed if the referenced train has passed

that position. The command therefore works as a $wait which is repeated for each such

section.

The command can only be set for trains routed in the same direction.

When a wait location is found and the train is due to be held, a special check is performed to

ensure the rear of the train is not in the path of the referenced train or, if it is, the referenced

train has already cleared that position. Otherwise, a deadlock would result, with the

referenced train not being able to pass the train which is waiting for it.

Command value : referenced train, this is compulsory.

Command qualifiers :

/maxdelay=n : n is the maximum delay (in minutes) of the referenced train for which the

wait is still valid.

This delay is compensated by any delay of the train which is to wait, e.g. if maxdelay

is 5 minutes, the referenced train has a delay of 8 minutes but this train itself has a

delay of 4 minutes, the compensated delay is 4 minutes and thus the wait is still

valid.

This parameter is optional, if not set a maxdelay of 0 minutes is set as default.

/owndelay = n (n is delay in minutes); the owndelay qualifier command makes the

command valid only if the train in question is delayed by at least the total minutes as set

for the owndelay qualifier.

This can be used to hold a late-running train such that is does not cause additional

delays to other trains, in particular on single track sections.

$waitany *

Syntax : $waitany=<path> /both

This command will set a wait for any train which is on the path section as defined.

If the qualifier /both is set, the wait will be applied for any train regardless of its direction,

otherwise the wait is set only for trains heading in the same direction as the definition of the

path.

The path defined in the waitany command must have a common section with the path of the

train itself, otherwise no waiting position can be found.

174

This command can be set to control trains to wait beyond the normal signal or deadlock rules.

For instance, it can be used to perform a check for a train which is to leave a siding or yard,

checking the line the train is to join for any trains approaching on that line, for a distance

further back than signalling would normally clear, so as to ensure it does not get into the path

of any train approaching on that line.

With the /both qualifier set, it can be used at the terminating end of single track lines to

ensure a train does not enter that section beyond the last passing loop if there is another train

already in that section as this could lead to irrecoverable deadlocks.

$[no]waitsignal

Syntax : $waitsignal

 $nowaitsignal

Normally, if a train is stopped at a station and the next signal ahead is still at danger, the train

will not depart. But, there are situations where this should be overruled.

Some stations are 'free line' stations - that is, they are not controlled by signals (usually small

halts, without any switches).

The next signal probably is a 'normal' block signal and may be some distance from the

station. In that situation, the train does not have to wait for that signal to clear in order to

depart.

Other situation are for freight trains, light engines and empty stock, which also usually do not

wait for the signal to clear but draw up to the signal so as to take as little as time as possible

to exit the station.

The $nowaitsignal qualifier can be set per station (in the station column), or per train.

If set per station, it can be overruled by $waitsignal per train.

$terminal

The $terminal command changes the calculation of the stop position, and makes the train

stop at the terminating end of the platform.

Whether the platform is really a terminating platform, and at which end it terminates, is

determined by a check of the train's path.

If the platform is in the first section of a train's path, or there are no junctions in the path

leading up to the section which holds the platform, it is assumed the train starts at a terminal

platform and the end of the train is placed close to the start of the platform.

If the platform is in the last section if the path or there are no junctions beyond the section

which holds the platform, it is assumed the platform is at the end of the train's path and the

train will run up to near the end of the platform in its direction of travel.

If neither condition is met, it is assumed it is not a terminal platform after all, and the normal

stop position is calculated.

The $terminal option can be set for a station, or for individual trains. If set for a station it

cannot be overruled by a train.

However, because of the logic as described above, if set for a station which has both terminal

platforms as well as through platforms, trains with paths continuing through those platforms

will have the normal stop positions.

175

11.4.7.6 Dispose Commands.

Dispose commands can be set in the #dispose row to define what is to be done with the train after

it has terminated.

See special notes below on the behaviour of the player train when it is formed out of another train

by a dispose command, or when the player train itself has a dispose command.

$forms

Syntax : $forms=<train> /runround=<path> /rrime=time /setstop

$forms defines which new train is to be formed out of this train when the train terminates.

The consist of the new train is formed out of the consist of the terminating train and any

consist definition for the new train is ignored.

The new train will be 'static' until the time as defined in #start row for that train. This means

that the new train will not try to clear its path, signals etc., and will not move even if it is not in

a station.

If the incoming train is running late, and its arrival time is later as the start time of the new

train, the start of the new train is also delayed but the new train will immediately become

active as soon as it is formed.

For locomotive-hauled trains, it can be defined that the engine(s) must run round the train in

order for the train to move in the opposite direction. The runround qualifier needs a path

which defines the path the engine(s) is to take when performing the runround. If the train has

more than one leading engine, all engines will be run round. Any other power units within the

train will not be moved.

For specific rules and conditions for runround to work, see discussion on the relationship

between signalling and the timetable concept.

If runround is defined, the time at which the runround is to take place can be defined. If this

time is not set, the runround will take place immediately on termination of the incoming train.

Command value : referenced train, this is compulsory.

Command qualifiers :

/runround=<path> : <path> is the path to be used by the engine to perform the runround.

This qualifier is optional; if set, the value is compulsory.

/rrtime=time: time is the definition of the time at which the runround is to take place. The

time must be defined in HH:mm and must use the 24 hour clock.

This qualifier is only valid in combination with the /runround qualifier, is

optional but if set, the value is compulsory.

/setstop: if this train itself has no station stops defined but the train it is to form starts at a

station, this command will copy the details of the first station stop of the formed

train, to ensure this train will stop at the correct location.

For this qualifier to work correctly, the path of the incoming train must

terminate in the platform area of the departing train.

This qualifier is optional and takes no values.

$triggers

Syntax : $triggers=<train>

176

$triggers also defines which new train is to be formed out of this train when the train

terminates.

However, when this command is used, the new train will be formed using the consist

definition of the new train and the existing consist is removed.

Command value : referenced train, this is compulsory.

$static

Syntax : $ static

The train will become a 'static' train after it has terminated.

Command value : none.

$stable

Syntax : $stable /out_path=<path> /out_time=time /in_path=<path> /in_time=time /static

/runround=<path> /rrtime= time /rrpos=<runround position> /forms=<train> /triggers=<train>

$stable is an extended form of either $forms, $triggers or $static, where the train is moved to

another location before the related command is performed. In case of /forms or /triggers, the

train can move back to the same or to another location where the new train actually starts.

Note that in these cases, the train has to make two moves, outward and inward.

A runround can be performed in case /forms is defined.

If /triggers is defined, the change of consist will take place at the 'stable' position. Any

reversal(s) in the inward path, or at the final inward position, are taken into account when the

new train is build, such that the consist is facing the correct direction when the new train is

formed at the final inward position.

The $stable can be used where a train forms another train but when the train must clear the

platform before the new train can be formed to allow other trains to use that platform. It can

also be used to move a train to a siding after completing its last duty, and be 'stabled' there

as static train.

Separate timings can be defined for each move; if such a time is not defined, the move will

take place immediately when the previous move is completed.

If timings are defined, the train will be 'static' after completion of the previous move until that

required time.

If the formed train has a valid station stop and the return path of the stable command

(in_path) terminates in the area of the platform of the first station stop of the formed train, the

'setstop' check (see setstop qualifier in $forms command) will automatically be added

Command value : none.

Command qualifiers :

/out_path=<path> : <path> is the path to be used by the train to move out to the 'stable'

position. The start of the path must match the end of the path of the incoming

train.

177

/out_time = time : time definition when the outward run must be started. Time is defined

as HH:mm and must use the 24 hour clock.

/in_path=<path> : <path> is the path to be used by the train for the inward run from the

'stable' position to the start of the new train. The start of the path must match

the end of the out_path, the end of the path must match the start of the path

for the new train.

/in_time = time : time definition when the inward run must be started. Time is defined

as HH:mm and must use the 24 hour clock.

/runround=<path> : <path> is the path to be used by the engine to perform the runround.

For details, see the $forms command definition of the time at which the

runround is to take place. The time must be defined in HH:mm and must use

the 24 hour clock.

/rrtime=time : time is the definition of the time at which the runaround is to take

place. The time must be defined in HH:mm and must use the 24 hour clock.

/rrpos = <runround position> : the position within the 'stable' move at which the runround

is to take place.

Possible values :

out : the runround will take place before the outward move is started.

stable : the runround will take place at the 'stable' position.

in : the runround will take place after completion of the inward move.

/static : train will become a 'static' train after completing the outward move.

/forms=<train> : train will form the new train after completion of the inward move. See

the $forms command for details.

/triggers=<train>: train will trigger the new train after completion of the inward move. The

train will change to the consist of the new train at the 'stable' position. See the

$triggers command for details.

Use of command qualifiers :

In combination with /static :

/out_path : compulsory

/out_time : optional

In combination with /forms :

/out_path : compulsory

/out_time : optional

/in_path : compulsory

/in_time : optional

/runround : optional

/rrtime : optional, only valid if /runround is set

178

/rrpos : compulsory if /runround is set, otherwise not valid

In combination with /triggers :

/out_path : compulsory

/out_time : optional

/in_path : compulsory

/in_time : optional

11.5 Additional Notes on Timetables

11.5.1 Static Trains

A static train can be defined by setting $static in the top row (e.g. as the 'name' of that train).

Consist and path are still required - the path is used to determine where the consist is placed (rear

end of train at start of path). No start-time is required.

The train will be created from the start of the timetable - but it cannot be used for anything within a

timetable. It cannot be referenced in any command etc., as it has no name. At present, it is also

not possible to couple to a static train - see below for details.

Note that there are some differences between timetable and activity mode in the way that static

trains are generated. In activity mode, the train is an instance of the Train class, with type STATIC.

In timetable mode, the train is an instance of the TTTrain class (as are all trains in timetable

mode), with type AI, movement AI_STATIC.

This difference may lead to different behaviour with respect to sound, smoke and lights.

11.5.2 Processing of #dispose Command For Player Train

When the player train terminates and a #dispose command is set for that train to form another

train (either $form, $trigger or $stable), the train will indeed form the next train as detailed, and that

next train will now be the new player train. So the player can continue with that train, for instance

on a return journey.

On forming the new train, the train will become 'Inactive'. This is a new state, in which the train is

not authorized to move.

Note that the F4 Track Monitor information is not updated when the train is 'Inactive'. The “Next

Station” display in the F10 Activity Monitor will show details on when the train is due to start. The

train will become 'active' at the start-time as defined for the formed train. For information, the

Activity Monitor window shows the name of the train which the player is running.

11.5.3 Termination of a Timetable Run

On reaching the end of a timetable run, the program will not be terminated automatically but has to

be terminated by the player.

11.5.4 Calculation of Running Delay

An approximate value of the delay is continuously updated. This approximation is derived from the

booked arrival time at the next station. If the present time is later as the booked arrival, and that

difference exceeds the present delay, the delay is set to that difference. The time required to reach

that station is not taken into account.

This approximation will result in better regulation where /maxdelay or /owndelay parameters are

used.

179

11.5.5 No Automatic Coupling

There is logic within the program which for any stopped train checks if it is close enough to

another train to couple to this train. It is this logic which allows the player train to couple to any

static train.

However, this logic contains some actions which do not match the processing of timetable trains.

Therefore this has now been disabled for timetable mode. Presently, therefore, coupling of trains

is not possible in timetable mode except for runround commands in dispose options.

Also uncoupling through the F9 window could be disabled in the near future for timetable mode.

In due course, new attach/detach functions will be included in the timetable concept to replace the

existing functions.

11.5.6 Signalling Requirements and Timetable Concept

11.5.6.1 General

The timetable concept is more demanding of the performance of the signalling system than

'normal' activities. The main reason for this is that the timetable will often have AI trains running in

both directions, including trains running ahead of the player train in the same direction as the

player train. There are very few activities with such situations as no effort would of course be

made to define trains in an activity which would never be seen, but also because MSTS could not

always properly handle such a situation.

Any flaws in signalling, e.g. signals clearing the path of a train too far ahead, will immediately have

an effect on the running of a timetable.

If signals clear too far ahead on a single track line, for instance, it means trains will clear through

passing loops too early, which leads to very long waits for trains in the opposite direction. This, in

turn, can lead to lock-ups as multiple trains start to converge on a single set of passing loops.

Similar situations can occur at large, busy stations - if trains clear their path through such a station

too early, it will lead to other trains being kept waiting to enter or exit the station.

If 'forms' or 'triggers' commands are used to link reversing trains, the problem is exacerbated as

any delays for the incoming train will work through on the return working.

11.5.6.2 Call On Signal Aspect

Signalling systems may allow a train to 'call on', i.e. allow a train onto a section of track already

occupied by another train (also known as permissive working).

The difference between 'call on' and 'permissive signals' (STOP and PROCEED aspects) is that

the latter is also allowed if the train in the section is moving (in the same direction), but 'call on'

generally is only allowed if the train in the section is at a standstill.

When a signal allows 'call on', AI trains will always pass this signal and run up to a pre-defined

distance behind the train in the section.

In station areas, this can lead to real chaos as trains may run into platforms occupied by other

trains such that the total length of both trains far exceeds the platform length, so the second train

will block the 'station throat' stopping all other trains. This can easily lead to a complete lock-up of

all traffic in and around the station.

To prevent this, calling on should be blocked in station areas even if the signalling would allow it.

To allow a train to ‘call on’ when this is required in the timetable, the $callon command must be set

180

which overrules the overall block. This applies to both AI and player train

 In case the train is to attach to another train in the platform, calling on is automatically set.

Because of the inability of AI trains in MSTS to stop properly behind another train if 'called on' onto

an occupied track, most signalling systems do not support 'call on' aspects but instead rely on the

use of 'permission requests'. AI trains cannot issue such a request, therefore in such systems

$callon will not work.

In this situation, attach commands can also not work in station areas.

Note that the 'runround' command also requires 'call on' ability for the final move of the engine

back to the train to attach to it. Therefore, when performed in station areas, also the runround can

only work if the signalling supports 'call on'.

Special signalling functions are available to adapt signals to function as described above, which

can be used in the scripts for relevant signals in the sigscr file.

The function "TRAINHASCALLON()" will return 'true' if the section beyond the signal up to the next

signal includes a platform where the train is booked to stop, and the train has the 'callon' flag set.

This function will also return 'true' if there is no platform in the section beyond the signal.

The function "TRAINHASCALLON_RESTRICTED" returns 'true' in similar conditions, except that it

always returns 'false' if there is no platform in the section beyond the signal.

Both functions must be used in combination with BLOCK_STATE = BLOCK_OCCUPIED.

11.5.6.3 Wait Commands and Passing Paths

From the location where the 'wait' or 'follow' is defined, a search is made for the first common

section for both trains, following on from a section where the paths are not common.

However, on single track routes with passing loops where 'passing paths' are defined for both

trains, the main path of the trains will run over the same tracks in the passing loops and therefore

no not-common sections will be found. As a result, the waiting point cannot find a location for the

train to wait and therefore the procedure will not work.

If waiting points are used on single track lines, the trains must have their paths running over

different tracks through the passing loop in order for the waiting points to work properly.

It is a matter of choice by the timetable creator to either pre-set passing locations using the wait

commands, or let the system work out the passing locations using the passing paths.

11.5.6.4 Wait Commands and Permissive Signals

The 'wait' and 'follow' commands are processed through the 'blockstate' of the signal control.

If at the location where the train is to wait permissive signals are used, and these signals allow a

'proceed' aspect on blockstate JN_OBSTRUCTED, the 'wait' or 'follow' command will not work as

the train will not be stopped.

181

11.5.6.5 Running Trains Around Midnight.

A timetable can be defined for a full 24 hour day, and so would include trains running around

midnight.

The following rules apply for the player train :

 Train booked to start before midnight will be started at the end of the day, but will

continue to run if terminating after midnight.

 Trains formed out of other trains starting before midnight will NOT be started if the

incoming train is delayed and as a result the start time is moved after midnight.

In this situation, the activity is aborted.

 Trains booked to start after midnight will instead be started at the beginning of the

day.

The following rules apply for AI trains :

 Trains booked to start before midnight will be started at the end of the day, but will

continue to run if terminating after midnight.

 Trains formed out of other trains starting before midnight will still be started if the

incoming train is delayed and as a result the start time is moved after midnight.

 Trains booked to start after midnight will instead be started at the beginning of the

day.

As a result of these rules, it is not really possible to run an activity around or through midnight with

all required AI trains included.

11.5.6.6 Viewing the Other Active Trains in the Timetable

To change the train that is shown in the external views, click Alt+F9 to display the “Train List “ and

select the desired train from the list of active trains, or click Alt+9 as described in “Changing the

View” to cycle through the active trains.

11.5.7 Known Problems

 If a #dispose command is processed for the player train , and the new train runs in the

opposite direction, the reverser will 'jump' to the reverse state on forming that new train.

 A run-round command defined in a #dispose command cannot yet be processed. It will be

necessary to switch to Manual to perform that run-round.

 If two trains are to be placed on a single siding using $create with /ahead qualifier, but the

trains have paths in opposite directions, the trains may be placed in incorrect positions.

 If the /binary qualifier is set for #path, but the OpenRails subdirectory in the Paths directory

does not exist, the program will not be able to load any paths.

182

11.6 Example of a Timetable File

Here is an excerpt of a timetable file (shown in Excel):

11.7 What tools are available to develop a Timetable?

It is recommended to use a powerful stand-alone program (Excel is not required) , called Timetable

Editor. It is included in the OR pack, and accessed from the “Tools” button on the OR menu..

183

12 Open Rails Multi-Player

12.1 Goal

The Multi-Player mode implemented in this stage is intended for friends to play OR together, each

assuming the role of a train engineer operating a train. There is a built-in way to compose and

send text messages, but there is no built-in tool for chatting, thus players are encouraged to use

Ventrillo, Skype, MSN, Yahoo, Teamspeak or other tools to communicate vocally.

The current release utilizes a peer-to-peer mode, thus each player must start and run OR on their

computer. A special server was deployed so you may not need to set up a server from your own

computer.

12.2 Getting Started

One player starts as the server, and then the others connect as clients. Each player will choose

and operate their own consist (and locomotive), but also can jump to watch others’ consists, or

couple with others to work as lead and DPU through a tough route, or even act as a dispatcher to

control signals and switches manually.

12.3 Requirements

The server can start an activity or choose to explore. Clients MUST choose to explore (or a

simple activity with timetable but no AI trains).

The client must select the same route played by the server.

It is not required for everyone to have the same set of paths, rolling stocks and consists.

12.4 Technical Issues

If you start the server at home, it will be necessary for you to learn your public IP address. You

may also need to configure your router for port forwarding. Details to accomplish these are given

in sections that follow.

It is recommended that you do not run a server for a prolonged period as the code has not been

tightened for security. Only tell people you trust that you have a server started.

12.5 Technical Support

You can ask questions in the following forums: trainsim.com, elvastower.com, uktrainsim.com,

etc.

A web forum has been set for you to post questions and announce servers. You can also request

a private club so that only your friends know of your server. The forum is free to join and post:

http://www.tsimserver.com/forums

http://www.tsimserver.com/forums

184

12.6 Starting a Multi-Player Session

12.6.1 Starting as Server

On the OR main menu you select in a standard way as described in the “Getting started” chapter

on the left side Route, activity or explore route, and in case of explore route you select as usual

locomotive, consist, path, time, season and weather.

On the lower right side you enter your User Name and the host and port address. If you want to

run as standalone server, or if you want to have more than instance of OR running in MP mode on

the same computer, you must set Host/port to 127.0.0.1:30000. 30000 is the default port, but you

can change to any integer between 10000 and 65536.

If you want to run in a local area network usually valid host addresses are 192.168.1.2 or

192.168.1.1.

After having inserted the Username and Host/port data you click on “Server”

When server starts, Windows Firewall may ask if you want to allow OR access to the Internet. If

so, click Allow. If you use other firewall software, you may need to configure it to allow OpenRails

to access the Internet.

There is no built-in limit of how many players can connect; a server with good Internet upload

bandwidth can be expected to handle at least 10 client connections.

185

12.6.2 Starting as Client

On the left side of the main menu you must enter only route, path and consist. The other

parameters are received from the server.

On the right side you enter your username, IP address and port of the server, and click on “Client”

12.7 In-Game Controls

Once the server and clients have started and connected, to display MultiPlayer status you must

press F5 to display the basic HUD; at the bottom of it you will see the information. You can watch

how many players and trains are present and how far away you are from others. You can also look

if you are acting as dispatcher (the server always is the dispatcher) or as client.

A player joined will have the same weather, time and season as the server, no matter what are the

original choices.

The player train may join the world and find that it is inside another train. Don’t panic, you have

two minutes to move your train out before OR thinks you want to couple with that train.

AI trains are added by the server and broadcast to all players. As a client, do not start an activity

with AI trains; moreover it is recommended that you start in Explore mode on the client.

You can jump to see other trains in sequence by pressing Alt+9. OpenRails will cycle through all

trains active on the server with each key press. If you are running an activity OpenRails will

include in the cycle any sidings that are used in the activity. As some trains may be far away,

OpenRails may need a few seconds to load the surrounding scenery. Thus you may temporarily

see a blank screen. You can press F7 to see train names. You can press 9 to return to seeing

your own train.

Locations of trains from other players are sent over the Internet. Because Internet routings vary

moment to moment there may be some lag, and trains may jump a bit as OpenRails tries to

186

update the locations with information received.

You can couple/decouple as usual. As coupling is controlled in the server, a player needs to drive

slowly so that the server will have accurate information of train positions. If two player trains

couple together, one of them will become a helper, and a message will be shown on the left

indicating that the player is in Helper mode. A player in Helper mode cannot control their consist

as it falls under control of the lead locomotive. By pressing Shift+E you can swap Helper status

with another player on the train. Always press \ and Shift+/ to reset brakes each time after

coupling/uncoupling.

Players can uncouple their own trains. Players in the uncoupled trains may need to press Shift+E

to gain control; otherwise, the uncoupled trains may become a loose consist. Always stop

completely before uncoupling, otherwise weird things may happen. Players may also need to

press keys for resetting brake state after uncoupling (see here).

Players can throw switches by pressing G or Shift+G , and the switch state will change for all

players on the server. The server has a choice to disallow clients to throw switches manually.

Both switches and signals are synchronized through the server (default every 10 seconds).

Player actions, such as sounding the horn or bell, turning on or off headlights, moving the

pantograph up and down, opening and closing doors, moving the mirrors are broadcast to other

players. Currently only the player controlled train has the cone of light shown.

A separate Dispatcher Window (also shown below) showing the route, signals and trains can be

activated by pressing Ctrl+9. By default, it is minimized and you must click on it on the Taskbar to

make it active. You can hide it by pressing Ctrl+9 again or by pressing Esc when that window has

the focus. This window is an extended version of the Dispatcher Window.

You can zoom in and out by rotating the mouse wheel, or by holding both the left and right mouse

button and moving the mouse (if you do not have a mouse wheel). You can hold shift key while

click the mouse in a place in the map, which will quickly zoom in with that place in focus. You can

hold Ctrl while click the mouse in a place in the map, which will zoom out to show the whole route.

Holding Alt and click will zoom out to show part of the route.

187

A red line will be drawn for each train so you can find its intended path.

You can select a train either by clicking on the name in the right bar, or in the map by clicking the

green train body. After that, you can click the “Remove” button to delete that train from the game.

You can pan the window by dragging it with the left mouse button.

One can click a switch (or signal) and press Ctrl+Alt+G to jump to that switch with the free-roam

camera.

The Dispatcher player can click a switch (black dot) and choose “Main Route” or “Side Route” to

switch. They can also click on a signal (green, red or orange dot) and choose to change the light.

The Dispatcher can choose a player and give the player right to throw switches and change

signals, by clicking the button “Assist”. The right can be revoked by click the “Normal” button.

The Dispatcher can choose a player from the avatar list and remove that player from the game.

You can send a text message by typing in the top left text input area, and view the most recent 10

messages from the viewing area. One can send message to all after finishing it, or select some

avatars and send a message to those selected.

188

12.8 Summary of Multi-Player Procedures

1. Server can start an activity or Explore. Clients must choose to Explore the route or start with

an activity without AI trains.

2. Missing rolling stock in other players’ consists will be automatically replaced by existing cars

from local directory.

3. You have two minutes after joining the game to move your train out of other trains.

4. Use Alt+9 to see other trains, 9 to see your own train, Ctrl+9 to view/hide the dispatcher

window. Use the mouse wheel to zoom and left mouse button to pan the dispatcher window.

5. We can send and read messages from the dispatcher window

6. Use Ctrl+Alt+F11 to see the path trains will follow, and F7 to see train names

7. Move trains slowly when trying to couple.

8. Use \ and Shift+/ (on English keyboards) just after your train is coupled or uncoupled, or when

you just gain back the control of your own train.

9. Use Shift+E to gain control of your own train after uncoupling.

10. Use other communication tools (such as Ventrillo or Skype) to communicate with other

players.

11. Always completely stop before uncoupling trains with two players coupled together

12.9 Possible Problems

 A server may not be able to listen on the port specified. Restart the server and choose

another port.

 If you cannot connect to the server, verify sure you have the correct IP address and port

number, and that the server has the port opened.

 If other player have rolling stock you do not have, that train will automatically replace

cars from your own folder, and this replacement may make the consist “interesting”.

 You may join the game and see you’ve selected the same start point as someone else

and that your train is inside another train. Move the trains apart within two minutes and

it will be fine.

 If your train is moving too quickly when trying to couple, the process may not work and

weird things can happen.

 As the server has absolute control, clients may notice the switch just changed will be

changed back a few seconds later if the server controlled train wants to pass it.

 Coupling/uncoupling the same set of trains may end up with weird things.

 Ctrl+E locomotive switch may have train cars flipped.

189

12.10 Using the Public Server

A special public server is deployed so that you do not need to use your own computer as the

server, avoiding the setup problems you may encounter. You can find the IP and port numbers

here .

To connect to this public server you must act as described here, using IP and port numbers as

found on the above link, with only a difference: the first player entering the session has to enter by

clicking on “Client” and not on “Server”, even if he intends to be the dispatcher. If the port has no

player yet, whoever connects first will be declared the dispatcher, others connected later will be

normal players.

The public server runs a special code that is not part of OR. If you plan to run such a server for

free, please contact the email listed in http://tsimserver.com/forums/showthread.php?2560.

12.10.1 Additional info on using the Public Server

 If the computer of the player acting as dispatcher crashes or if the connection with it

breaks down, the public server will try to appoint another player as dispatcher. Such

player will receive on his monitor the following message: “You are the new

dispatcher. Enjoy!”

 If a client crashes or loses the connection, its position is held by the server for about two

minutes. If the client re-enters the game within such time frame, it will re-enter the game

in the position where he was at the moment of the crash.

http://www.tsimserver.com/ORFiles031205/ServerInfo.html
http://tsimserver.com/forums/showthread.php?2560

190

13 Multi-Player: Setting up a Server from Your Own Computer
As any online game, you need to do some extra work if you want to host a multiplayer session.

13.1 IP Address

If you are running at home and use a router, you may not have a permanent IP. Thus before you

start as a server, you must find your IP. The quickest ways are the following:

1. Using Google: type in “find ip address”, then Google will tell you

2. If the above does not work, try http://whatismyipaddress.com/ip-lookup/, which shows your
IP in the middle of the page.

http://whatismyipaddress.com/ip-lookup/

191

13.2 Port Forwarding

If you are using a router at home with several computers, your router needs to be told which

computer on your home network should receive the network data OpenRails needs. This is done

by enabling Port Forwarding on the router. The default port OpenRails uses is 30,000. If you

change that port number in the game you’ll need to change the forwarded port number in the

router as well. Your router must be told to forward data arriving from the internet on the correct

port to the network IP address of the computer running OpenRails. For more information on

Network Address Translation (NAT) and how Port Forwarding works, see this site:

 http://www.4remotesupport.com/4content/remote_support_NAT.html Here The following are the

steps:

1. Go to http://portforward.com/english/routers/port_forwarding/, which contains a lot of ads - just

focus on the center of this page.

2. Locate the name of the manufacturer of your router, i.e. Airlink and click it:

http://www.4remotesupport.com/4content/remote_support_NAT.html
http://portforward.com/english/routers/port_forwarding/

192

3. A page may appear allowing you to select your specific model of router:

193

4. It then shows all the programs (games) for which you want to forward ports. Just click “Default

Guide”:

5. A page like the following should appear. Ignore the part crossed-out but pay special attention

to the part enclosed in red:

6. Then follow the steps listed on the screen. Remember you want to forward port 30,000 by

default, but if you change that you’ll have to forward the correct port.

If you still cannot get others connected to your computer, please go to

www.tsimserver.com/forums and ask questions.

194

14 Open Rails Sound Management

14.1 OR vs. MSTS Sound Management

OR executes .sms files to a very high degree of compatibility with MSTS.

14.2 .sms Instruction Set

OR recognizes and manages the whole MSTS .sms instruction set, in a way generally compatible

with MSTS. The differences are described below.

The Activation () instruction behaves differently from MSTS with regard to cameras (CabCam,

ExternalCam and PassengerCam): in general OR does not consider which cameras are explicitly

activated within the .sms files. Instead, it uses a sort of implicit activation, that as a general rule

works as follows:

 when in an inside view (cabview or passenger view) the related inside .sms files are

heard, plus all external .sms files (with the exception of those related to the trainset

where the camera is in that moment): the volume of those external files is attenuated by

a 0.75 factor.

 when in an external view all external .sms files are heard.

For an .sms file to be heard, it must be within the activation distance defined in the related

instruction.

A hack is available so as to hear only in the cabview some .sms files residing outside the cabview

trainset. This can be used e.g. to implement radio messages. For this to work the related .sms file

must be called within a .wag file, must contain an Activation (CabCam) statement, and the

related wagon must be within a loose consist, within a not yet started AI train or within the consist

where the cabview trainset resides.

The ScalabiltyGroup () instruction behaves differently from MSTS for AI trains. While MSTS uses

ScalabiltyGroup (0) for AI trains, OR uses for AI trains the same ScalabiltyGroup used for player

trains. This way AI train sound can profit from the many more triggers active for AI trains in ORTS.

For instance, Variable2 trigger is not active in MSTS for AI trains, while it is in ORTS.

If a Stereo() line is present within a ScalabiltyGroup, and a mono .wav sound is called, MSTS will

play the sound at double speed. In order to have it play at the correct speed, a frequency curve

halving the speed has to be inserted. OR behaves the same as MSTS in this case.

14.3 Discrete Triggers

Unlike MSTS, OR does not restrict the operation of some discrete triggers related to locomotives

to the cabview related .sms file (usually named ...cab.sms file). On OR they are all also active in

the file related to the external view (usually named ...eng.sms file).

OR manages following MSTS discrete triggers

 2 DynamicBrakeIncrease (currently not managed)

 3 DynamicBrakeOff

 4 SanderOn

 5 SanderOff

 6 WiperOn

 7 WiperOff

195

 8 HornOn

 9 HornOff

 10 BellOn

 11 BellOff

 12 CompressorOn

 13 CompressorOff

 14 TrainBrakePressureIncrease

 15 ReverserChange

 16 ThrottleChange

 17 TrainBrakeChange

 18 EngineBrakeChange

 20 DynamicBrakeChange

 21 EngineBrakePressureIncrease

 22 EngineBrakePressureDecrease

 27 SteamEjector2On

 28 SteamEjector2Off

 30 SteamEjector1On

 31 SteamEjector1Off

 32 DamperChange

 33 BlowerChange

 34 CylinderCocksToggle

 36 FireboxDoorChange

 37 LightSwitchToggle

 38 WaterScoopDown

 39 WaterScoopUp

 41 FireboxDoorClose

 42 SteamSafetyValveOn

 43 SteamSafetyValveOff

 44 SteamHeatChange (currently not managed).

 45 Pantograph1Up

 46 Pantograph1Down

 47 Pantograph1Toggle

 48 VigilanceAlarmReset

 54 TrainBrakePressureDecrease

 56 VigilanceAlarmOn

 57 VigilanceAlarmOff

 58 Couple

 59 CoupleB (currently not managed)

 60 CoupleC (currently not managed)

 61 Uncouple

 62 UncoupleB (currently not managed)

 63 UncoupleC (currently not managed)

MSTS .sms files for crossings (crossing.sms), control error and permission announcements

(ingame.sms) together with their triggers are managed by OR.

MSTS triggers for derailment and fuel tower are currently not managed by OR.

MSTS .sms files related to weather (clear_ex.sms, clear_in.sms, rain_ex.sms, rain_in.sms,

snow_ex.sms, snow_in.sms) are managed by OR.

The signal file (signal.sms) and its discrete trigger 1 is managed by OR.

Moreover, OR manages the extended set of discrete triggers provided by MSTSbin.

196

14.3.1 OR- Specific Discrete Triggers

OR manages the following set of new discrete triggers that were not present under MSTS. If

MSTS (or MSTSbin) executes an .sms where such discrete triggers are used, it simply ignores the

related statements.

- triggers 101 - GearUp and 102 - GearDown for gear-based engines; they are triggered by the E resp.

Shift+E key and they are propagated to all gear-based diesel engines of a train and run also for AI trains

- triggers 103 - ReverserToForwardBackward and 104 - ReverserToNeutral (valid for all locomotive types);

this couple of triggers allows to distinguish if the reverser is moved towards an active or towards a neutral

position, which is not possible under MSTS

- triggers 105 - DoorOpen and 106 - DoorClose (valid for all locomotive types); they are triggered by the Q

and Shift+Q keys and are propagated to the wagons of the consist (that is also the .sms files of the wagons

can refer to these triggers)

- triggers 107 - MirrorOpen and 108 - MirrorClose (valid for all locomotive types); they are triggered by the

Shift+Q key.

Triggers from 109 to 118 are used for TCS scripting, as follows:

- triggers 109 and 110: TrainControlSystemInfo1 and -Info2

- triggers 111 and 112: TrainControlSystemActivate and -Deactivate

- triggers 113 and 114: TrainControlSystemPenalty1 and -Penalty2

- triggers 115 and 116: TrainControlSystemWarning1 and -Warning2

- triggers 117 and 118: TrainControlSystemAlert1 and -Alert2.

Triggers from 121 to 136 are used to synchronize steam locomotive chuffs with wheel rotation.

The sixteen triggers are divided into two wheel rotations. Therefore every trigger is separated from

the preceding one by a rotation angle of 45 degrees.

- triggers 137 – CylinderCocksOpen and 138 – CylinderCocksClose (valid for steam locomotive) triggered

when cylinder cocks are opened or closed

- trigger 139 – TrainBrakePressureStoppedChanging (valid for all rolling stock equipped with train brakes) to

supplement triggers 14 and 54, and make looped brake sounds possible

- trigger 140 – EngineBrakePressureStoppedChanging (valid for locomotives with engine/independent

brakes) to supplement triggers 21 and 22, and make looped brake sounds possible

- triggers 141 – BrakePipePressureIncrease and 142 – BrakePipePressureDecrease and 143 –

BrakePipePressureStoppedChanging (valid for rolling stock equipped with train brakes) triggered by brake

pipe/brakeline pressure changes

In addition, OpenRails extends triggers 23 and 24 (electric locomotive power on/power off), that

were introduced by MSTSbin, to diesel engines. Keys Shift+Y (for diesel player engine) and Ctrl+Y

(for diesel helpers), apart from physically powering on and off the diesel engines, trigger the above

triggers.

14.4 Variable Triggers

OR manages all of the variable triggers managed by MSTS. There can be some difference in the

relationship between physical locomotive variables (e.g. Force) and the related variable. This

applies to Variable2 and Variable3.

New variables introduced by OR:

197

- BrakeCyl, which contains the brake cylinder pressure in PSI. Like the traditional MSTS variables, it can be

used to control volume or frequency curves (BrakeCylControlled) and within variable triggers

(BrakeCyl_Inc_Past and BrakeCyl_Dec_Past).

- CurveForce, in Newtons when the rolling stock is in a curve. Can be used for curve flange sounds, with two

volume curves: one is SpeedControlled, which makes the sound speed dependent too, and

CurveForceControlled. Of course CurveForce_Inc_Past, and CurveForce_Dec_Past are also available for

activating and deactivating the sound.

14.5 Sound Loop Management

Sound loop management instructions are executed as follows by OR:

 StartLoop/ReleaseLoopRelease: the .wav file is continuously looped from beginning to

end; when the ReleaseLoopRelease instruction is executed, the .wav file is played up to

its end and stopped.

 StartLoopRelease/ReleaseLoopRelease: the .wav file is played from the beginning up

to the last CuePoint, and then continuously looped from first to last CuePoint; when the

ReleaseLoopRelease instruction is executed, the .wav file is played up to its end and

stopped.

 StartLoopRelease/ReleaseLoopReleaseWithJump: the .wav file is played from the

beginning up to the last CuePoint, and then continuously looped from the first to the last

CuePoint. When the ReleaseLoopReleaseWithJump instruction is executed, the .wav

file is played up to the next CuePoint, then jumps to the last CuePoint and stops. It is

recommended to use this pair of instructions only where a jump is effectively needed,

as e.g. in horns; this because this couple of instructions is more compute intensive and

can lead to short sound breaks in the case of high CPU loads.

14.6 Testing Sound Files at Runtime

The sound debug window is a useful tool for testing.

198

15 Open Rails Cabs
OR supports both MSTS-compatible 2D cabs as well as native 3D cabs, even on the same

locomotive.

15.1 2D Cabs

OR supports with a high degree of compatibility all functions available in MSTS for 2D cabs, and

provides some significant enhancements described in the next paragraphs.

OR adds support for the ETCS circular speed gauge, as described here.

15.2 High-resolution Cab Backgrounds and Controls

In MSTS the resolution of the cab background image is limited to 1024x1024; this limitation does

not apply in OR as a result of OR's better handling of large textures.

2D cab backgrounds can reach at least to 3072x3072; however very fine results can be obtained

with a resolution of 2560x1600. The image does not have to be square.

2D cab animations have also been greatly improved; you are reminded here that there are two

types of animated rotary gauges, i.e. normal gauges and general animations using multiple

frames. In this second case in MSTS all of the frames had to be present in a single texture with a

max resolution of 640x480. In OR these frames can be as large as desired and OR will scale them

to the correct size. In general it is not necessary to use a resolution greater than 200x200 for every

frame.

The syntax to be used in the .cvf file is the standard one as defined by MSTS.

To clarify this, the position parameters of a sample needle block are described here.

In the "Position" statement, the first 2 numbers are the position of the top left-hand side of the

needle texture in cabview units with the needle in the vertical position. In the Dial type the last 2

numbers are the size of the needle texture. The last number (50 in the example) controls the

scaling of the needle texture, i.e. changing this changes the size of the needle that OR displays.

Dial (

Type (SPEEDOMETER DIAL)

Position (549 156 10 50)

Graphic (Speed_recorder_needle_2.01.ace)

Style (NEEDLE)

ScaleRange (0 140)

ScalePos (243 115)

Units (KM_PER_HOUR)

Pivot (38)

DirIncrease (0)

Next is an example of a control animation, this one is a simple 3 frame animation. The examples

shown in the following images are the two rotary switches to the right of the two lower brake

gauges, both being 3 position. (The left most switch is for the headlights). For these animations

the graphic was done at 1600x1600; when each frame was finished it was scaled down to

200x200 and placed into the animation texture. Note the extreme sharpness of these controls in

the inset image.

Adding a slight amount of 2x2 pixel blur helps the animation blend into the background better (this

199

has been done to the gauge needles).

Below is the appropriate part of the CVF. The scaling is controlled by the last two digits of the

"Position" statement.

 TriState (

 Type (DIRECTION TRI_STATE)

 Position (445 397 35 35)

 Graphic (Switch_nob_3.0_Transmission.ace)

 NumFrames (3 3 1)

 Style (NONE)

 MouseControl (1)

 Orientation (0)

 DirIncrease (0)

)

Note that the “Airbrake On” light (on the panel upper left) has also been animated. This is a simple

2 frame animation.

200

Shown above are two pictures of one hi-res 2D cabview, one showing the whole cab, and the

other one showing the detail of some controls. In this example the cab background image used

was cut down to 2560x1600. The texture for the Speed Recorder needle is 183x39 and for the

brake gauge needles is 181x29, Note the odd number for the width. This is required as OR (and

MSTS) assume the needle is in the center of the image. The Reversing and Headlight switch

animation frames are 116x116.

There are as yet no specific tools to create these cabviews; a standard image manipulation

program to do all textures is required, and to create any new items, e.g. the gauge faces, a

standard drawing program can be used. To actual set up the cabview and to position the

animations the .cvf file is modified with a standard text editor, and OR is used as a viewer, using a

straight section of track on a quick loading route. Through successive iterations one arrives quite

quickly at a satisfactory result.

15.2.1 Configurable Fonts

OR supports a configurable font family, with font size selection, and a choice of regular or bold

style. More than one font or size can be used in the same cabview. This does not affect the

display in MSTS.

An optional line of the form ‘ORTSfont (fontsize fontstyle "fontfamily")’ must be inserted into the

.cvf block of the digital control or digital clock, where ‘fontsize’ is a float (default value 10),

‘fontstyle’ an integer having the value 0 (default) for regular and 1 for bold, and ‘fontfamily’ is a

201

string with the font family name (ex. "Times New Roman"). The default is "Courier New". A

convenient font, if available, is “Quartz MS” or “Quartz”, which models a 7-segment display (45).

Here is an example that displays the digital clock with a 12 pt. bold font using the Sans Serif font

family.

DigitalClock (

 Type (CLOCK DIGITAL_CLOCK)

 Position (40 350 56 11)

 Style (12HOUR)

 Accuracy (1)

 ControlColour (255 255 255)

 ORTSFont (12 1 "Sans Serif")

)

It is acceptable if only the first parameter of ORTSFont is present, or only the first two, or all three.

Note that you cannot use the MS Cabview editor on the .cvf file after having inserted these

optional lines, because the editor will delete these added lines when the file is saved.

15.3 3D cabs

The key to enter into a 3D cab (if the player locomotive has one) is Alt+1.

15.3.1 Development Rules

 for content developers:

1. The 3D cab is described by an .s file, the associated .ace or .dds files; and a .cvf file having the

same name as the .s file. All these files reside in a folder named “CABVIEW3D” created within

the main folder of the locomotive.

2. If the .cvf file cannot be found in the CABVIEW3D folder, the 3D cab is associated with the .cvf

file of the 2D cab.

3. Instruments are named with the same conventions as 2D cabs, i.e. FRONT_HLIGHT,

SPEEDOMETER, etc.

4. A cab can have multiple instances of the same instruments, for example multiple clocks or

speedometers.

202

5. Instruments are sorted based on the order of their appearance in the .cvf file, for example

SPEEDOMETER:0 corresponds to the first speedometer in the .cvf file, SPEEDOMETER:1

corresponds to the second one.

6. An instrument can have multiple subgroups to make the animation realistic, for example,

TRAIN_BRAKE:0:0 and TRAIN_BRAKE:0:1 belong to the instrument TRAIN_BRAKE:0.

However, if the instrument is a digital device, the second number will be used to indicate the font

size used, for example SPEEDOMETER:1:14 means the second speedometer (which is digital

as defined in .cvf) will be rendered with 14pt font. This may be changed in future OR releases.

The important information for a digital device is its location, thus it can be defined as an object

with a small single face in the 3D model.

7. Animation ranges must be in agreement with the .cvf file

8. Within the Wagon section of the .eng file a block like the following one has to be generated:

ORTS3DCab(

ORTS3DCabFile (Cab.s)

ORTS3DCabHeadPos (-0.9 2.4 5.2)

RotationLimit (40 60 0)

StartDirection (12 0 0)

)

9. It is also possible to animate the wipers, by inserting into the .s file an animation named

EXTERNALWIPERS:0:0

10. Gauges of solid type have to be named AMMETER:1:10:100; where the three numbers

indicate that this is the second ammeter, that it has a width 10mm, and a maximum length of

100mm. The color and direction/orientation follow those defined in .cvf files.

11. Digits for 3D cabs can now use custom ACE files; e.g. name the part as

CLOCK:1:15:CLOCKS. This will draw the second clock with 15mm font dimension, with the

CLOCKS.ACE file in CABVIEW3D containing the font. If no ace is specified, the default will be

used.

12. Mirrors and doors can be operated from 3D cabs. The names used are LEFTDOOR,

RIGHTDOOR and MIRRORS.

13. The current version of controlling the view in a 3D cab is described here.

A demo trainset with a 3D cab, that may be useful for developers, can be downloaded from:

 http://www.tsimserver.com/Download/Df11G3DCab.zip.

15.3.2 A Practical Development Example For a Digital Speedometer

 for content developers:

Let's suppose you wish to create a digital speedometer using a size 14 font.

To explain it in 'gmax' speak, you must have an object called 'SPEEDOMETER' in the cab view

and it must be comprised of at least one face.

As the sample cab has only one digital speedometer, it can be named SPEEDOMETER_0_14.

The number 0 indicates that this is the first speedometer gauge in the cab and the number 14

indicates the size of the font to display. Note that an underscore is used to separate the numbers

http://www.tsimserver.com/Download/Df11G3DCab.zip

203

as the LOD export tool does not support the use of colons in object names when exporting. More

on this later.

The speed does not display where the face for the SPEEDOMETER object is located but where

the 'pivot point' for the SPEEDOMETER object is located. Normally you would place the

SPEEDOMETER object somewhere in the cab where it will not be seen.

With the 'SPEEDOMETER_0_14' object selected in gmax, go to the 'Hierarchy' tab, select 'Affect

Pivot Only' and click 'Align to World' to reset the orientation to world coordinates. Then use the

'Select and Move' tool to move the pivot to where in the cab you wish the numerals to appear. As

you have aligned the pivot point to World coordinates the numerals will display vertically. As most

locomotive primary displays are normally angled you may have to rotate the pivot point so that it

aligns with the angle of the 'display screen'.

Export the .S file for the cab as per normal.

You will then have to uncompress the .s file for the cab using Shape File Manager or the .S file

decompression tool of your choice.

Then open the .S file with a text editor and search for the letters 'speed' until you find the first

instance of SPEEDOMETER_0_14 and change it to be SPEEDOMETER:0:14. Search again and

find the second instance of SPEEDOMETER_0_14 and change that also to

SPEEDOMETER:0:14. Save the .S file in the text editor.

Now just one more thing. Download the DF11G3DCab demo trainset. In the CABVIEW3D folder of

that download you will find an ace file called 'SPEED.ACE'. Copy that file and paste it into the

CABVIEW3D folder for your model.

Now, open OR and test your speedometer.

204

16 OR-Specific Route Features
As a general rule and as already stated, Open Rails provides all route functionalities that were

already available for MSTS, plus some opportunities such as also accepting textures in .dds

format.

OR provides a simple way to add snow terrain textures: the following default snow texture names

are recognized: ORTSDefaultSnow.ace and ORTSDefaultDMSnow.ace, to be positioned within

folder TERRTEX\SNOW of the concerned route. For the snow textures that are missing in the

SNOW subfolder, and only for them, ORTS uses such files to display snow, if they are present,

instead of using file blank.bmp.

To have a minimum working snow texture set, the file microtex.ace must also be present in the

SNOW subfolder.

205

17 Developing OR Content
Open Rails is defining and developing its own development tools.

However it is already possible to develop OR content (rolling stock, routes, 3D objects, activities)

using the tools used to develop MSTS content, thanks to the high compatibility that OR has with

MSTS. Below, some of the advantages of OR-specific content are described.

17.1 Rolling Stock

1. OR is able to display shapes with many more polygons than MSTS. Shapes with more than

100.000 polys have been developed and displayed without problems.

2. Thanks to the additional physics description parameters, a much more realistic behavior of the

rolling stock is achieved.

3. 3D cabs add realism.

4. OR graphics renders the results of the rolling stock developers at higher resolution.

5. Rolling stock running on super-elevated track improves gaming experience.

17.2 Routes

1. Routes are displayed in higher resolution.

2. Extended viewing distance yields much more realism.

3. Double overhead wire increases the realism of electrified routes.

4. Extended signaling features provide more realistic signal behavior.

17.3 Activities

1. Timetable mode is a new activity type available only in Open Rails that allows for development

of timetable based gaming sessions.

2. By using the dispatcher monitor window, the dispatcher HUD, and the ability to switch the

camera to any AI train, the player can more closely monitor and control the execution of

conventional activities.

3. Extended AI shunting greatly increases the interactions between trains.

4. New OR-specific additions to activity (.act) files enhance activities.

17.4 Testing and Debugging Tools

As listed here, a rich and powerful set of analysis tools eases the testing and debugging of content

under development.

206

17.5 Open Rails Best Practices

17.5.1 Polys vs. Draw Calls – What’s Important

Poly counts are still important in Open Rails software, but with newer video cards they’re much

less important than in the early days of MSTS. What does remain important to both environments

are Draw Calls.

A Draw Call occurs when the CPU sends a block of data to the Video Card. Each model in view,

plus terrain, will evoke one or more Draw Calls per frame (i.e., a frame rate of 60/second means all

of the draw calls needed to display a scene are repeated 60 times a second). Given the large

number of models displayed in any scene and a reasonable frame rate, the total number of Draw

Calls per second creates a very large demand on the CPU. Open Rails software will adjust the

frame rate according to the number of required Draw Calls. For example, if your CPU can handle

60,000 Draw Calls per second and the scene in view requires 1000 Draw Calls, your frame rate

per second will be 60. For the same CPU, if the scene requires 2000 Draw Calls, your frame rate

per second will be 30. Newer design / faster CPU’s can do more Draw Calls per second than older

design / slower CPU’s.

Generally speaking, each Draw Call sends one or more polygon meshes for each occurrence of a

texture file for a model (and usually more when there are multiple material types). What this means

in practice is if you have a model that uses two texture files and there are three instances of that

model in view there will be six draw calls – once for each of the models (3 in view) times once for

each texture file (2 files used), results in six Draw Calls. As an aid to performance Open Rails will

examine a scene and will issue Draw Calls for only the models that are visible. As you rotate the

camera, other models will come into view and some that were in view will leave the scene,

resulting in a variable number of Draw Calls, all of which will affect the frame rate.

Model builders are advised that the best performance will result by not mixing different material

types in a texture file as well as using the fewest number of texture files as is practical.

17.6 Support

Support can be requested on the OR forum on www.elvastower.com/forums .

The OR development team, within the limits of its possibilities, is willing to support contents

developers.

18 Version 1.1 Known Issues

18.1 Empty “Effects” Section in .eng File

If an engine file is used that has an Effects() section that contains no data, the engine will not be

loaded by ORTS.

http://www.elvastower.com/forums

207

19 In Case Of Malfunction

19.1 Introduction

When you have an issue with Open Rails (ORTS), no matter what it is, the OR development team

is always thankful for reports of possible bugs. Of course, it is up to the developers to decide if

something is a real bug, but in any case your reporting of it is an important step in helping the

development team to improve Open Rails.

19.2 Overview of Bug Types

The development team uses two ways of keeping track of bugs:

1. So called "Maybe-Bugs" are reported in a simple forum post: see next paragraph for links. This

is done in order to give developers a chance to filter out problems caused by circumstances the

development team cannot control such as corrupted content.

2. Decided Bugs are issues a developer has looked at and has found to be a real issue in the

program code of Open Rails. They are reported at our Bug Tracker at

https://bugs.Launchpad.net/or/ (registration is required).

19.3 “Maybe-Bugs”

If you find an issue with Open Rails you should first file a Maybe-Bug report at any of the following

forums monitored by the Open Rails development team:

 Elvas Tower (http://www.elvastower.com/), "Maybe it´s a bug" section of the Open Rails

sub-forum. This is the forum that is most frequently checked by the OR development

team;

 TrainSim.com (http://www.trainsim.com/), "Open Rails discussion" section of the Open

Rails sub-forum

 MJRMSTSRepaints (http://mjrmstsrepaints.proboards.com/)

...more forums may be added in the future

A Maybe-Bug report consists of a simple post in a new topic in the forum. The title of the topic

should be of the form "Open Rails V#### Bug: +++++", where #### is the version number of the

Open Rails release you are having problems with, and +++++ is a quick description of the problem

you are having. This format aids the developers in getting a quick idea of the issue being reported.

The first post in this newly started topic should give further information on your problem: Start out

with exactly what problem you are getting, describing it in narrative and supplementing this

description with screenshots, error messages produced by Open Rails, and so on.

Next give a clear indication of the content you were using (that is: Route, Activity, Path, Consist,

Locomotive and Rolling Stock; whatever is applicable), whether it is freeware or payware, what the

exact name of the downloaded package was and where it can be obtained. Of course, posting a

download link to a trustworthy site or directly attaching files to the post also is OK.

Continue with an exact description of what you were doing when the problem arose (this may

already be included in the first paragraph, if the problem is train-operation-related). Again,

screenshots etc. can be helpful to better describe the situation.

Lastly, take a look at your desktop for a text (*.TXT) file entitled OpenRailsLog.txt. Upload and

http://www.elvastower.com/forums/index.php?/forum/244-maybe-its-a-bug/
http://www.trainsim.com/vbts/forumdisplay.php?104-Open-Rails-Discussion
http://mjrmstsrepaints.proboards.com/

208

attach this file to the end of your post. This is very important as the log file contains all relevant

program data the user has no chance to ever see, and thus it is one of the most important sources

of information for the developer trying to solve your problem.

Once your post has been submitted, keep adding further information only in additional posts, in

order to avoid the risk of people not noticing your edits. Also, please be patient with developers

responding to your report. Most forums are checked only once a day, so it may take some time for

a developer to see your report.

Important: The more information a developer gets from the first post, the quicker he will be able to

locate, identify and eventually resolve a bug. On the other hand, reports of the form, "I have

problem XYZ with recently installed Open Rails. Can you help me?" are of little use, as all required

information must be asked for first.

Important: Please do not rush to report a Decided Bug on the Bug Tracker before a developer has

declared your problem a real bug!

The above description is available in a condensed "checklist" form below.

19.4 Decided bugs

Most bug reports never even make it to the status of a Decided Bug, due to either being resolved

too quickly to be worthy of an entry on the Bug Tracker or being a content or user error. Some

Maybe-Bugs, however, will eventually be declared Decided Bugs. Such secured bugs should be

reported at our Bug Tracker, when the developer taking the report asks you to.

The Open Rails Bug Tracker is found at https://bugs.Launchpad.net/or/, following the "Report a

bug" link in the upper half to the right of the screen. You will need to register at Launchpad in order

to be able to report a bug.

Once that is done, follow the steps the software takes you through: In "Summary" copy and paste

the quick description of the bug you also entered as a forum thread name for the Maybe-Bug

report.

Next, look through the list of topics Launchpad thinks your bug may be related to - maybe your

issue has already been reported?

If you cannot relate to any of the suggested bugs, click the "No, I need a new bug report" button

and continue.

In the "Further Information" field, enter the same info you also gave in the Maybe-Bug report (copy

and paste). Screenshots may need to be added as attachments, and you will also need to re-

upload the OpenRailsLog.txt file. Do not forget to include all info you added in additional posts to

the original Maybe-Bug report, and also add a link to the latter at the bottom of the "Further

Information" field.

Once your bug has been submitted, keep adding further information only in additional posts, in

order to avoid the risk of developers missing the additional info.

The above description is available in a condensed "checklist" form below.

Important: Do not say "All information is included in the linked thread" as skimming through a

thread for the crucial bit of information is a really annoying task. Instead, please provide a concise,

but complete summary of the Maybe-Bug thread in the "Further Information" field.

https://bugs.launchpad.net/or/

209

Important: Please do not rush to report a Decided Bug on our Bug Tracker before a developer has

declared your Maybe-Bug a real bug!

19.5 Additional Notes

Please do not post feature requests as a Maybe-Bug to the Bug Tracker on Launchpad!

Please do not report the same bug multiple times, just because the first report did not get attention

within a short time. Sorting out the resulting confusion can slow things down even more.

Please do not report Bugs directly to the Bug Tracker when you are not 100% sure it´s a real,

significant bug, or have not been asked to do so.

Don't be offended by bug statuses - they often sound harsher than they really mean, like "Invalid".

Don't expect a speedy response in general - issues will get looked at as and when people have

the time.

Be prepared to expand upon the initial report - it is remarkably easy to forget some crucial detail

that others need to find and fix your bug, so expect to be asked further questions before work can

begin.

Try to avoid comments that add no technical or relevant detail - if you want to record that the bug

affects you, Launchpad has a dedicated button at the top: "Does this bug affect you?".

If you wish to follow the progress of someone else's bug report and get e-mail notifications, you

can subscribe to bug mail from the sidebar.

19.6 Summary: Bug Report Checklists

19.6.1 “Maybe-Bug”

 New topic in appropriate sub-forum

 Topic Title: "Open Rails V<version> Bug: <description>"

 Description of problem, supplemented by screenshots etc.

 Content used (Route, Activity, Path, Consist, Locomotive & Rolling Stock; choose

applicable); Freeware / Payware?; Package name & download location / download link

 Narrative of actions shortly before & at time of problem, supplemented by screenshots

etc.

 Attach log file (Desktop: OpenRailsLog.txt)

 Add further info only in additional posts

 Be patient

19.6.2 Decided Bug

 Report to Bug Tracker only if asked to do so

 https://bugs.Launchpad.net/or/ (Registration required) -> "Report a bug"

 "Summary": Description from the topic title of the Maybe-Bug report

 Look for similar, already reported bugs

 Condense whole Maybe-Bug thread into "Further information" field

 Add link to original Maybe-Bug report

210

 Re-upload and attach OpenRailsLog.txt & explanatory screenshots etc.

 Add further info only in additional posts

 Be patient

19.7 Bug Status in Launchpad

 New - this is where all bugs start. At this point, the bug has not been looked at by the

right people to check whether it is complete or if more details are needed.

 Incomplete - a member of the Open Rails teams has decided that the bug needs more

information before it can be fixed. The person who created the bug report does not have

to be the one to provide the extra details. A bug remaining incomplete for 60

consecutive days is automatically removed.

 Opinion - the bug has been identified as an opinion, meaning that it isn't clear whether

there is actually a bug or how things should be behaving.

 Invalid - a member of the team believes that the report is not actually a bug report. This

may be because Open Rails is working as designed and expected or it could just be

spam. The bug may be put back to the new state if further information or clarity is

provided in comments.

 Won't Fix - a member of the team has decided that this bug will not be fixed at this

time. If the bug report is a "feature request", then they have decided that the feature

isn't desired right now. This status does not mean something will never happen but

usually a better reason for fixing the bug or adding the feature will be needed first.

 Confirmed - a member of the team has been able to experience the bug as well, by

following the instructions in the bug report.

 Triaged – a member of the team has assigned the importance level to the bug or has

assigned it to a specific milestone. Bugs generally need to get to this state before the

developers will want to look at them in detail.

 In Progress - one or more members of the team are currently planning to or actually

working on the bug report. They will be identified by the assignee field.

 Fix Committed - the fix for the bug report or feature request has been completed and

checked in to the source control system, Subversion. Once there, the fix will usually

appear in the next experimental release.

 Fix Released - The code containing the bug fix has been released in an official release.

19.8 Disclaimer

Having posted a bug report in a forum or in Launchpad does not generate any obligation or liability

or commitment for the OR development team to examine and fix the bug. The OR development

team decides whether it will examine and fix the bug on a completely voluntary and autonomous

basis.

211

20 Open Rails Software Platform
 Inside view:

20.1 Architecture

To better understand how the Open Rails game operates, performs, and functions, the architecture

diagram below lays out how the software code is organized. The architecture of the Open Rails

software allows for modular extension and development, while providing standardized methods to

customize the simulation experience.

 Please note that this diagram includes many capabilities and functions that are yet

to be implemented.

20.2 Open Rails Game Engine

The Open Rails software is built on Microsoft’s XNA game platform using XNA Framework 3.1 and

.NET Framework 3.5 SP1. Source code is developed in Microsoft's Visual C# programming

language.

The XNA Framework is based on the native implementation of .NET Compact Framework for Xbox

360 development and .NET Framework on Windows. It includes an extensive set of class libraries,

212

specific to game development, to promote maximum code reuse across target platforms. The

framework runs on a version of the Common Language Runtime that is optimized for gaming to

provide a managed execution environment. The runtime is available for Windows XP, Windows

Vista, Windows 7, Windows 8, and Xbox 360. Since XNA games are written for the runtime, they

can run on any platform that supports the XNA Framework with minimal or no modification of the

Game engine.

 A license fee is payable to Microsoft to use XNA Game Studio for Xbox 360 games. At

this time, the Open Rails team has not investigated whether the Open Rails software is

suitable for Xbox.

20.3 Frames per Second (FPS) Performance

For the current release, the Open Rails development team has untethered the FPS rate from the

sync rate of the monitor. This allows the development team to more easily document performance

improvements. The Open Rails team at a later date may decide to limit FPS to the sync rate of the

monitor.

20.4 Game Clock and Internal Clock

Like other simulation software, Open Rails software uses two internal “clocks”; a game clock and

an internal clock. The game clock is required to synchronize the movement of trains, signal status,

and present the correct game environment. The internal clock is used synchronize the software

process for optimal efficiency and correct display of the game environment.

The Open Rails team is dedicated to ensuring the game clock properly manages time in the

simulation, so that a train will cover the proper distance in the correct time. The development team

considers this vital aspect for an accurate simulation by ensuring activities run consistently across

community members’ computer systems.

20.5 Resource Utilization

Because Open Rails software is designed for Microsoft’s XNA game framework, it natively exploits

today’s graphics cards’ ability to offload much of the display rendering workload from the

computer’s CPU.

20.6 Multi-Threaded Coding

The Open Rails software is designed from the ground up to support up to 4 CPUs, either as virtual

or physical units. Instead of a single thread looping and updating all the elements of the simulation,

the software uses four threads for the main functions of the software.

Thread 1 - Main Render Loop (RenderProcess)

Thread 2 - Physics and Animation (UpdaterProcess)

Thread 3 - Shape and Texture Loading/Unloading (LoaderProcess)

Thread 4 – Sound
There are other threads used by the multiplayer code as each opened communication is handled

by a thread.

The RenderProcess runs in the main game thread. During its initialization, it starts two subsidiary

threads, one of which runs the UpdaterProcess and the other the LoaderProcess. It is important

213

that the UpdaterProcess stays a frame ahead of RenderProcess, preparing any updates to

camera, sky, terrain, trains, etc. required before the scene can be properly rendered. If there are

not sufficient compute resources for the UpdaterProcess to prepare the next frame for the

RenderProcess, the software reduces the frame rate until it can “catch up”.

Initial testing indicates that “stutters” are significantly reduced because the process

(LoaderProcess) associated with loading shapes and textures when crossing tile boundaries do

not compete with the main rendering loop (RenderProcess) for the same CPU cycles. Thread

safety issues are handled primarily through data partitioning rather than locks or semaphores to

maximise performance.

Ongoing testing by the Open Rails team and the community will determine what and where the

practical limits of the software lie. As the development team receives feedback from the

community, improvements and better optimization of the software will contribute to better overall

performance – potentially allowing high polygon models with densely populated routes at

acceptable frame rates.

214

21 Plans and Roadmap
Here are some highlights that the community can expect from the Open Rails team after v1.0.

A more complete roadmap can be found at https://launchpad.net/or/+milestones

21.1 User Interface

A new Graphical User Interface (GUI) within the game.

21.2 Operations

In addition to the new Timetable concept described in this document, some further

improvements are planned:

 Extended ability to customize signals to accommodate regional, geographic, or

operational differences

 Ability to use mixed signal environments - from dark territory to fully automatic in-cab

train control within the same route

 Specifying random variations for AI trains in consist and delays.

 Specifying separate speed profiles for passenger or freight trains.

 AI trains which can split or combine

 A schedule for AI trains which can depend on other trains (e.g. wait a limited time).

21.3 Open Rails Route Editor

Now that the project is moving beyond MSTS, we are at last able to specify the Open Rails Route

Editor. This will free us from the constraints and fragility of the MSTS tool. The editor will, of

course, use GIS data, edit the terrain and allow objects to be placed and moved.

In particular, it will be possible to lay both track pieces and procedural track. The procedural track

may bend up and down to follow the contours of the land and twist to build banked curves and

spirals. There will be support for transition curves and it will be easy to lay a new track parallel to

an existing one.

The new Route Editor will not be backwards-compatible with MSTS routes. It will work with Open

Rails routes and there will be a utility to create an Open Rails route from an MSTS route.

No timetable is available for this work.

https://launchpad.net/or/+milestones

215

22 Acknowledgements
Open Rails is the result of true teamwork performed by a group of passionate people. We owe a

massive thanks to all of them and therefore wish to mention them below and excuse ourselves if

someone has been forgotten:

Adam Kane

Adam Miles

Alex Bloom

Andre Ming1

Anthony Brailsford

Barrie Scott

Barry Munro

Bill Currey

Bill Prieger

Bob Boudoin

Bruno Sanches

Carlo Santucci

Chris Jakeman1

Chris Van Wagoner

Craig Benner

Daniel Leach

David B. Clarke

Dennis Towlson

Derek Morton

Doug Kightley

Douglas Jones

Edward Keenan

Eric Pannese

Eric Swenson

Eugen Rippstein

Fabian Joris

György Sárosi

Greg Davies

Hank Sundermeyer

Haifeng Li

James Ross1

Jan Vytlačil

Jean-Louis Chauvin

Jeff Bush

Jeffrey Kraus-Yao

Jijun Tang

Jim Jendro

Jim Ward

John Sandford

1 Member of the Open Rails Management Team

Joseph Hoevet

Joseph Realmuto

Larry Steiner

Laurie Heath

Lutz Doellermann

Marc Nelson

Markus Gelbmann

Matêj Pácha

Matt Peddlesden

Matt Munro

Paul Bourke

Paul Gausden

Paul Wright

Peter Gulyas

Peter Newark

Phil Voxland

Remus Iancu

Richard Plokhaar

Rick Grout

Rick Hargraves

Riemer Grootjans

Rob Lane

Robert Hodgson

Robert Murphy

Roberto Ceccarelli

Robert Roeterdink

Samuel Kelly

Sándor Tarcsi

Scott Miller

Sid Penstone

Tim Muir

Walter Niehoff

Wes Card

 and …

216

Dave Nelson for providing us a meeting place at Elvas Tower,

Pete Peddlesden for hosting our website and repository,

and of course, Wayne Campbell for inspiring this improbable journey.

217

23 Appendices

23.1 Units of Measure

Open Rails supports the same default units of measure as MSTS which are mostly, but not

exclusively, metric.

When creating models just for Open Rails, we recommend you do not use defaults but specify

units for all values that represent physical quantities.

As shown below, Open Rails provides a wider choice of units than MSTS.

Measure Default
unit

Applies
to

OR
accepts

MSTS
accepts

Comment

Mass kg kg kg

 t t metric tonne (1,000 kg)

 lb lb

 t-uk Imperial ton (2,240 lb)

 t-us US ton (2,000 lb)

Distance mm

 cm cm

 m m m

 km

 in in

 in/2 in/2 half-inch - historic unit for tyre
diameters

 ft

 mile

Area m^2

 *(m^2) *(m^2)

 ft^2 ft^2

 *(ft^2) *(ft^2)

Volume l
diesel
fuel l litres

 m^3

 *(m^3)

 in^3

 *(in^3)

 ft^3 other *(ft^3) *(ft^3) e.g. BoilerVolume

 g-uk Imperial gallons

 g-us US gallons

 gal US gallons

 gals gals US gallons

218

Measure Default
unit

Applies
to

OR
accepts

MSTS
accepts

Comment

Time second s

 m

 h

Current amp a

 amp

Voltage volt v

 kv

Mass Rate of
Change

 g/h

 kg/h

 lb/h lb/h lb/h

Speed m/s other m/s m/s metres per second

 km/h

 kph kph kilometres per hour

 kmh kmh misspelling accepted by MSTS

 mph dynamic
brake

mph mph miles per hour

Frequency hz hz Hertz

 rps revolutions per second

 rpm

Force N n n Newton

 kn kn

 lbf Pounds force

 lb

Power w w Watt

 kw

 hp horsepower

Stiffness n/m n/m n/m Newtons per metre

Resistance n/m/s n/m/s n/m/s Newtons per metre per second

 ns/m Newton seconds per metre

Angular
Resistance

n/rad/s n/rad/s

Pressure psi
air

pressure psi pounds per square inch

219

Measure Default
unit

Applies
to

OR
accepts

MSTS
accepts

Comment

 bar atmospheres

 kpa Kilopascals

 inhg vacuum inhg inches of mercury

Pressure
Rate of
Change

psi/s psi/s

 bar/s

 kpa/s

 inhg/s

Energy
Density

kj/kg kj/kg Kilojoules per kilogram

 j/g

 btu/lb Board of Trade Units per pound

Temperature
Difference

degc degc

 degf

Angle radians -

 deg

Angular Rate rad/s - rad/s

Other - lb/hp/h e.g. CoalBurnage

	1 Legal
	1.1 Warranty
	1.2 Properties Acknowledgment
	1.3 Copyright Acknowledgment and License

	2 New in This Release
	3 Introduction
	3.1 What is Open Rails?
	3.2 About Open Rails
	3.3 Does Open Rails Require You to Have MSTS Installed?
	3.4 Community
	3.5 Raildriver Support
	3.6 Highlights of the Current Version
	3.6.1 Focus on Compatibility
	3.6.2 Focus on Operations
	3.6.3 Focus on Realistic Content

	4 Use of MSTS Files by Open Rails
	4.1 Overview
	4.1.1 Your MSTS Installation and Custom Installations for Open Rails

	4.2 MSTS Directories Used by Open Rails
	4.3 MSTS Files Used in Whole or Part by Open Rails
	4.3.1 Route Files
	4.3.2 Environment .env files
	4.3.2.1 OR Defined Weather
	4.3.2.2 OR Weather using MSTS Compatibility

	4.3.3 Activities

	4.4 Using a Non-MSTS Folder Structure
	4.5 Original MSTS Files Usually Needed for Added MSTS-Compatible Content
	4.5.1 Original MSTS Files Usually Needed for a Non-MSTS-Folder Structure
	4.5.1.1 \GLOBAL
	4.5.1.2 \GLOBAL\SHAPES
	4.5.1.3 \TRAINS
	4.5.1.4 \SOUND
	4.5.1.5 \ROUTES

	5 Getting Started
	5.1 Installation Profiles
	5.2 Updating OR
	5.3 Further General Buttons
	5.3.1 Tools
	5.3.2 Documents

	5.4 Preliminary Selections
	5.5 Gaming Modes
	5.5.1 Traditional “Activity” and “Explore mode” modes
	5.5.2 Timetable Mode
	5.5.3 Run!
	5.5.4 Multiplayer Mode
	5.5.5 Replay

	6 Open Rails Options
	6.1 General Options
	6.1.1 Alerter in Cab
	6.1.2 Dispatcher window
	6.1.3 Graduated release air brakes
	6.1.4 Large address aware binaries
	6.1.5 Control confirmations
	6.1.6 Retainer valve on all cars
	6.1.7 Brake pipe charging rate
	6.1.8 Language
	6.1.9 Pressure unit
	6.1.10 Other units
	6.1.11 Disable TCS scripts

	6.2 Audio Options
	6.3 Video Options
	6.3.1 Dynamic shadows
	6.3.2 Fast full-screen alt+tab
	6.3.3 Glass on in-game windows
	6.3.4 Model instancing
	6.3.5 Overhead wire
	6.3.6 Vertical sync
	6.3.7 % Cab 2D Stretch
	6.3.8 Viewing distance
	6.3.9 Distant Mountains
	6.3.10 Viewing vertical FOV
	6.3.11 World object density
	6.3.12 Window size
	6.3.13 Ambient daylight brightness

	6.4 Simulation Options
	6.4.1 Advanced adhesion model
	6.4.2 Adhesion moving average filter size
	6.4.3 Break couplers
	6.4.4 Curve dependent resistance
	6.4.5 Curve dependent speed limit
	6.4.6 Tunnel dependent resistance
	6.4.7 Override non-electrified route line-voltage
	6.4.8 Steam locomotive hot start

	6.5 Keyboard Options
	6.6 Data Logger Options
	6.7 Evaluation Options
	6.8 Content Options
	6.9 Updater Options
	6.10 Experimental Options
	6.10.1 Super-elevation
	6.10.2 Automatically tune settings to keep performance level
	6.10.3 Double overhead wires
	6.10.4 Show shape warnings
	6.10.5 Forced red at station stops
	6.10.6 Load night textures only when needed
	6.10.7 Signal light glow
	6.10.8 Extended AI train shunting
	6.10.9 Autopilot
	6.10.10 ETCS circular speed gauge
	6.10.11 Extend object maximum viewing distance to horizon
	6.10.12 Load DDS textures in preference to ACE
	6.10.13 Location-linked passing path processing
	6.10.14 MSTS Environments
	6.10.15 Adhesion factor correction
	6.10.16 Level of detail bias
	6.10.17 Adhesion proportional to rain/snow/fog
	6.10.18 Adhesion factor random change
	6.10.19 Precipitation Box Size
	6.10.20 Correct questionable braking parameters

	7 Driving a Train
	7.1 Game Loading
	7.2 Entering the Simulation
	7.3 Open Rails Driving Controls
	7.3.1 Throttle Control
	7.3.2 Dynamic Braking
	7.3.3 Combined Control
	7.3.1 Blended Dynamic Brake
	7.3.2 Refill
	7.3.3 Specific Features to Optimize Locomotive Driving
	7.3.4 Examples of Driving Controls

	7.4 Driving aids
	7.4.1 Basic Head Up Display (HUD)
	7.4.2 Electric Locomotives – Additional information
	7.4.3 Steam Engine – Additional Information
	7.4.4 Multiplayer – Additional Information
	7.4.5 Compass Window
	7.4.6 F1 Information Monitor
	7.4.7 F4 Track Monitor
	7.4.8 F6 Siding and Platform Names
	7.4.9 F7 Train Names
	7.4.10 F8 Switch Monitor
	7.4.11 F9 Train Operations Monitor
	7.4.12 F10 Activity Monitor
	7.4.13 Odometer

	7.5 Dispatcher Window
	7.6 Additional Train Operation Commands
	7.6.1 Diesel Power On/Off
	7.6.2 Initialize Brakes
	7.6.3 Connect/Disconnect Brake Hoses
	7.6.4 Doors and Mirror Commands
	7.6.5 Wheelslip Reset
	7.6.6 Toggle Advanced Adhesion
	7.6.7 Request to Clear Signal
	7.6.8 Change Cab - Ctrl+E
	7.6.9 Train Oscillation

	7.7 Autopilot Mode
	7.8 Changing the Train Driven by the Player
	7.8.1 General
	7.8.2 Switching to a static train
	7.8.3 Waiting point considerations

	7.9 Changing the View
	7.10 Toggling Between Windowed Mode and Full-screen
	7.11 Modifying the Game Environment
	7.11.1 Time of Day
	7.11.2 Weather
	7.11.3 Modifying Weather at Runtime
	7.11.4 Season

	7.12 Screenshot - Print Screen
	7.13 Suspending or Exiting the Game
	7.14 Save and Resume
	7.14.1 Saves from Previous OR Versions

	7.15 Save and Replay
	7.15.1 Exporting and Importing Save Files

	7.16 Analysis Tools
	7.16.1 Extended HUD for Consist Information
	7.16.2 Extended HUD for Locomotive Information
	7.16.3 Extended HUD for Brake Information
	7.16.4 Extended HUD for Train Force Information
	7.16.5 Extended HUD for Dispatcher Information
	7.16.6 Extended HUD for Debug Information
	7.16.7 Viewing Interactive Track Items
	7.16.8 Viewing Signal State and Switches
	7.16.9 Sound Debug Window

	7.17 OpenRailsLog.txt Log file
	7.18 Code-embedded Logging Options
	7.19 Testing in Autopilot Mode

	8 Open Rails Physics
	8.1 Train Cars (WAG, or “Wagon” Part of ENG file)
	8.1.1 Resistive Forces
	8.1.2 Coupler Slack
	8.1.3 Adhesion of Locomotives – Settings Within the Wagon Section of ENG files

	8.2 Engine – Classes of Motive Power
	8.2.1 Diesel Locomotives in General
	8.2.1.1 Starting the Diesel Engine
	8.2.1.2 Stopping the Diesel Engine
	8.2.1.3 Starting or Stopping “Helper” Diesel Engines
	8.2.1.4 ORTS Specific Diesel Engine Definition
	8.2.1.5 Diesel Engine Speed Behavior
	8.2.1.6 Fuel Consumption
	8.2.1.7 Diesel Exhaust
	8.2.1.8 Cooling System

	8.2.2 Diesel-Electric Locomotives
	8.2.3 Diesel-Hydraulic Locomotives
	8.2.4 Diesel-Mechanical Locomotives

	8.3 Electric Locomotives
	8.4 Steam Locomotives
	8.4.1 General Introduction to Steam Locomotives
	8.4.1.1 Principles of Train Movement
	Forces Impacting Train Movement

	8.4.1.2 Elements of Steam Locomotive Operation
	8.4.1.3 Locomotive Types
	Superheated Locomotives
	Geared Locomotives

	8.4.2 Steam Locomotive Operation
	8.4.2.1 Open Rails Steam Functionality (Fireman)
	8.4.2.2 Hot or Cold Start
	8.4.2.3 Main Steam Locomotive Controls
	8.4.2.4 Steam Locomotive Carriage Steam Heat Modelling

	8.4.3 Steam Locomotives – Physics Parameters for Optimal Operation
	8.4.3.1 Required Input ENG and WAG File Parameters

	8.5 Engines – Multiple Units in Same Consist or AI Engines
	8.6 Open Rails Braking
	8.6.1 Using the F5 HUD Expanded Braking Information
	8.6.1.1 Coupling Cars
	8.6.1.2 Uncoupling Cars
	8.6.1.3 Setting Brake Retainers

	8.6.2 Dynamic Brakes
	8.6.3 Native Open Rails Braking Parameters
	8.6.4 Brake Retainers
	8.6.5 Emergency Brake Application Key

	8.7 Dynamically Evolving Tractive Force
	8.8 Curve Resistance - Theory
	8.8.1 Introduction
	8.8.2 Factors Impacting Curve Friction
	8.8.3 Impact of Rigid Wheelbase
	8.8.4 Impact of Super Elevation
	8.8.5 Calculation of Curve Resistance
	8.8.6 Calculation of Curve Speed Impact
	8.8.7 Further background reading

	8.9 Curve Resistance - Application in OR
	8.9.1 OR Parameter Values
	8.9.2 OR Default Values
	8.9.3 Typical Rigid Wheelbase Values

	8.10 Super Elevation (Curve Speed Limit) . Theory
	8.10.1 Introduction
	8.10.2 19th & 20th Century Vs Modern Day Railway Design
	8.10.3 Centrifugal Force
	8.10.4 Effect of Centrifugal Force
	8.10.5 Use of Super Elevation
	8.10.6 Limitation of Super Elevation in Mixed Passenger & Freight Routes
	8.10.7 Limitation of Super Elevation in High Speed Passenger Routes
	8.10.8 Maximum Curve Velocity
	8.10.9 Limitation of Velocity on Curved Track at Zero Cross Level
	8.10.10 Height of Centre of Gravity
	8.10.11 Calculation of Curve Velocity
	8.10.12 Typical Super Elevation Values & Speed Impact - Mixed Passenger & Freight Routes
	8.10.13 Typical Super Elevation Values & Speed Impact - High Speed Passenger Routes

	8.11 Super Elevation (Curve Speed Limit) Application in OR
	8.11.1 OR Super Elevation Parameters
	8.11.2 OR Super Elevation Default Values

	8.12 Tunnel Friction -Theory
	8.12.1 Introduction
	8.12.2 Factors Impacting Tunnel Friction
	8.12.3 Importance of Tunnel Profile
	8.12.4 Calculation of Tunnel Resistance

	8.13 Tunnel Friction - Application in OR
	8.13.1 OR Parameters
	8.13.2 OR Defaults

	8.14 OR-Specific “Include” Files for Modifying MSTS File Parameters
	8.14.1 Modifications to .eng and .wag Files
	8.14.2 Modifications to .trk Files

	8.15 Train Control System

	9 Further Open Rails Rolling Stock Features
	9.1 Train Engine Lights
	9.2 Tilting trains
	9.3 Freight animations and pickups
	9.3.1 OR implementation of MSTS freight animations and pickups
	9.3.2 OR specific freight animations and pickups
	9.3.2.1 General
	9.3.2.2 Continuous OR Freightanims
	9.3.2.3 Static OR Freightanims

	9.4 Special Steam Effects for Steam Locomotives.

	10 Open Rails Train Operation
	10.1 Open Rails Activities
	10.1.1 Player Paths, AI Paths, and How Switches Are Handled

	10.2 Open Rails AI
	10.2.1 Basic AI Functionality

	10.3 Control Mode
	10.3.1 Auto Mode
	10.3.1.1 Details on Auto Mode: “Auto Signal” & “Auto Node”

	10.3.2 Manual Mode
	10.3.3 Out-of-Control Mode
	10.3.4 Explorer Mode

	10.4 Track Access Rules
	10.5 Deadlock Processing
	10.6 Reversal Points
	10.7 Waiting Points
	10.7.1 General
	10.7.2 Absolute Waiting Points

	10.8 Signals at Station Stops
	10.9 Speedposts and Speed Limits Set by Signals
	10.10 Further Features of AI Train Control
	10.11 Location-linked Passing Path Processing
	10.12 Other Comparisons Between Running Activities in ORTS or MSTS
	10.12.1 End of run of AI trains:
	10.12.2 “Default Performance” and “Performance” Parameters
	10.12.3 Start of Run of AI train in a Section Reserved by Another Train
	10.12.4 Stop Time at Stations
	10.12.5 Restricted speed zones defined in activities

	10.13 Extended AI Train Shunting
	10.13.1 General
	10.13.2 Activity Design for Extended AI Train Shunting Functions
	10.13.2.1 Extended AI Functions 1 to 4 (these all involve coupling)
	10.13.2.2 Extended AI Function 5 (AI train uncouples any number of its cars)
	10.13.2.3 Function 6 (Join and split)
	10.13.2.4 Function 7 (Permission to pass signal at danger for AI train)

	10.14 Signal related files
	10.14.1 SignalNumClearAhead
	10.14.2 Location of OR-specific sigcfg and sigscr files
	10.14.3 OR-unique values for SignalNumClearAhead ()

	10.15 OR-specific Signaling Functions
	10.15.1 SPEED Signals – a New Signal Function Type
	10.15.2 Definition and Usage
	10.15.3 Approach control functions
	10.15.4 TrainHasCallOn Function
	10.15.5 TrainHasCallOn_Restricted Function
	10.15.6 How to Lay Down These Signals on the Route
	10.15.7 Signalling Function NEXT_NSIG_LR
	10.15.8 Signalling Function HASHEAD

	10.16 OR-Specific Additions to Activity Files
	10.16.1 No Halt by Activity Message Box
	10.16.2 AI Train Horn Blow
	10.16.3 AI Horn Blow at Level Crossings
	10.16.4 Location Event and Time Event Sound File
	10.16.5 Weather Change Activity Event

	11 Timetable Mode
	11.1 Introduction
	11.2 General
	11.2.1 Data definition
	11.2.2 File structure
	11.2.3 File and train selection

	11.3 Timetable Definition
	11.3.1 General
	11.3.2 Column definitions
	11.3.3 Row definitions
	11.3.4 Timing details

	11.4 Timetable Data Details
	11.4.1 Timetable Description
	11.4.2 Train Details
	11.4.3 Location Details
	11.4.4 Timing Details
	11.4.5 Special Columns
	11.4.6 Special rows
	11.4.7 Control commands
	11.4.7.1 General
	11.4.7.2 Command syntax
	11.4.7.3 Train Reference
	11.4.7.4 Location Commands
	11.4.7.5 Train control commands.
	11.4.7.6 Dispose Commands.

	11.5 Additional Notes on Timetables
	11.5.1 Static Trains
	11.5.2 Processing of #dispose Command For Player Train
	11.5.3 Termination of a Timetable Run
	11.5.4 Calculation of Running Delay
	11.5.5 No Automatic Coupling
	11.5.6 Signalling Requirements and Timetable Concept
	11.5.6.1 General
	11.5.6.2 Call On Signal Aspect
	11.5.6.3 Wait Commands and Passing Paths
	11.5.6.4 Wait Commands and Permissive Signals
	11.5.6.5 Running Trains Around Midnight.
	11.5.6.6 Viewing the Other Active Trains in the Timetable

	11.5.7 Known Problems

	11.6 Example of a Timetable File
	11.7 What tools are available to develop a Timetable?

	12 Open Rails Multi-Player
	12.1 Goal
	12.2 Getting Started
	12.3 Requirements
	12.4 Technical Issues
	12.5 Technical Support
	12.6 Starting a Multi-Player Session
	12.6.1 Starting as Server
	12.6.2 Starting as Client

	12.7 In-Game Controls
	12.8 Summary of Multi-Player Procedures
	12.9 Possible Problems
	12.10 Using the Public Server
	12.10.1 Additional info on using the Public Server

	13 Multi-Player: Setting up a Server from Your Own Computer
	13.1 IP Address
	13.2 Port Forwarding

	14 Open Rails Sound Management
	14.1 OR vs. MSTS Sound Management
	14.2 .sms Instruction Set
	14.3 Discrete Triggers
	14.3.1 OR- Specific Discrete Triggers

	14.4 Variable Triggers
	14.5 Sound Loop Management
	14.6 Testing Sound Files at Runtime

	15 Open Rails Cabs
	15.1 2D Cabs
	15.2 High-resolution Cab Backgrounds and Controls
	15.2.1 Configurable Fonts

	15.3 3D cabs
	15.3.1 Development Rules
	15.3.2 A Practical Development Example For a Digital Speedometer

	16 OR-Specific Route Features
	17 Developing OR Content
	17.1 Rolling Stock
	17.2 Routes
	17.3 Activities
	17.4 Testing and Debugging Tools
	17.5 Open Rails Best Practices
	17.5.1 Polys vs. Draw Calls – What’s Important

	17.6 Support

	18 Version 1.1 Known Issues
	18.1 Empty “Effects” Section in .eng File

	19 In Case Of Malfunction
	19.1 Introduction
	19.2 Overview of Bug Types
	19.3 “Maybe-Bugs”
	19.4 Decided bugs
	19.5 Additional Notes
	19.6 Summary: Bug Report Checklists
	19.6.1 “Maybe-Bug”
	19.6.2 Decided Bug

	19.7 Bug Status in Launchpad
	19.8 Disclaimer

	20 Open Rails Software Platform
	20.1 Architecture
	20.2 Open Rails Game Engine
	20.3 Frames per Second (FPS) Performance
	20.4 Game Clock and Internal Clock
	20.5 Resource Utilization
	20.6 Multi-Threaded Coding

	21 Plans and Roadmap
	21.1 User Interface
	21.2 Operations
	21.3 Open Rails Route Editor

	22 Acknowledgements
	23 Appendices
	23.1 Units of Measure

